269
Views
5
CrossRef citations to date
0
Altmetric
Case Report

Simulating wave overtopping on a complex coastal structure using SPH

ORCID Icon, , & ORCID Icon
Pages 55-65 | Received 02 Jun 2019, Accepted 15 Jan 2020, Published online: 04 Feb 2020

References

  • Antuono M, Colagrossi A, Marrone S, Molteni D. 2010. Free-surface flows solved by means of SPH schemes with numerical diffusive terms. Comput Phys Commun. 181:532–549. doi: 10.1016/j.cpc.2009.11.002
  • Aureli F, Dazzi S, Maranzoni A, Mignosa P, Vacondio R. 2015. Experimental and numerical evaluation of the force due to the impact of a dam-break wave on a structure. Adv Water Resour. 76:29–42. doi: 10.1016/j.advwatres.2014.11.009
  • Batchelor GK. 2000. An introduction to fluid dynamics. Cambridge: Cambridge University Press.
  • Buvat C, Guéguen N. 2018. Projet inondations externes: Compte-rendu d’essais no 1 sur l’avancement des essais des surverses complexes dans le canal 5 - essais en houle regulière [External Floods Project: Test Report # 1 on Test Progress of Complex Overflows in Channel 5 - Regular. Chatou.
  • Carmigniani R. 2017. Open wave rectifiers: towards a novel way to harvest wave energy. [place unknown]: Université Paris-Est.
  • Carmigniani R, Leroy A, Violeau D. 2019. A simple SPH model of a free surface water wave pump: Waves above a submerged plate. Coast Eng J. 61:96–108. doi: 10.1080/21664250.2018.1560923
  • Carmigniani R, Violeau D. 2018. Optimal sponge layer for water waves’ numerical models. Ocean Eng. 163:169–182. doi: 10.1016/j.oceaneng.2018.05.068
  • Chamberlain PG, Porter D. 1999. On the solution of the dispersion relation for water waves. Appl Ocean Res. 21:161–166. doi: 10.1016/S0141-1187(99)00006-1
  • Colagrossi A, Colicchio G, Lugni C, Brocchini M. 2010. A study of violent sloshing wave impacts using an improved SPH method. J Hydraul Res. 48:94–104. doi: 10.1080/00221686.2010.9641250
  • Colagrossi A, Souto-Iglesias A, Antuono M, Marrone S. 2013. Smoothed-particle-hydrodynamics modeling of dissipation mechanisms in gravity waves. Phys Rev E – Stat Nonlinear, Soft Matter Phys. 87(2).
  • Crespo AC, Dominguez JM, Barreiro A, Gómez-Gesteira M, Rogers BD. 2011. GPUs, a new tool of acceleration in CFD: Efficiency and reliability on smoothed particle hydrodynamics methods. PLoS One. 6:1–13.
  • Crespo AJC, Gómez-Gesteira M, Dalrymple RA. 2007. Boundary conditions generated by dynamic particles in SPH methods. Comput Mater Contin. 5:173–184.
  • Dalrymple RA, Rogers BD. 2006. Numerical modeling of water waves with the SPH method. Coast Eng. 53:141–147. doi: 10.1016/j.coastaleng.2005.10.004
  • Dehnen W, Aly H. 2012. Improving convergence in smoothed particle hydrodynamics simulations without pairing instability. Mon Not R Astron Soc. 425:1068–1082. doi: 10.1111/j.1365-2966.2012.21439.x
  • Ferrari A, Dumbser M, Toro EF, Armanini A. 2009. A new 3D parallel SPH scheme for free surface flows. Comput Fluids. 38:1203–1217. doi: 10.1016/j.compfluid.2008.11.012
  • Gingold R, Monaghan JJ. 1977. Smoothed particle hydrodynamics-theory and application to non-spherical stars. Mon Not R Astron Soc. 181:375–389. doi: 10.1093/mnras/181.3.375
  • Grenier N, Antuono M, Colagrossi A, Le Touzé D, Alessandrini B. 2009. An Hamiltonian interface SPH formulation for multi-fluid and free surface flows. J Comput Phys. 228:8380–8393. doi: 10.1016/j.jcp.2009.08.009
  • Guilbert N. 2018. Modélisation de Vagues et de Franchissements avec Code_Saturne. Paris.
  • Hérault A, Bilotta G, Dalrymple RA. 2010. SPH on GPU with CUDA. J Hydraul Res. 48(Sup1):74–79. doi: 10.1080/00221686.2010.9641247
  • Hughes JP, Graham DI. 2010. Comparison of incompressible and weakly-compressible SPH models for free-surface water flows. J Hydraul Res. 48:105–117. doi: 10.1080/00221686.2010.9641251
  • Kihara N, Niida Y, Takabatake D, Kaida H, Shibayama A, Miyagawa Y. 2015. Large-scale experiments on tsunami-induced pressure on a vertical tide wall. Coast Eng. 99:46–63. doi: 10.1016/j.coastaleng.2015.02.009
  • Leroy A. 2014. Un nouveau modèle SPH incompressible : vers l’application à des cas industriels [A new incompressible SPH model : towards the application to industrial cases]. [place unknown]: Université Paris-Est.
  • Lucy LB. 1977. A numerical approach to the testing of the fission hypothesis. Astron J. 82:1013–1024. doi: 10.1086/112164
  • Madsen PA, Schäffer HA. 2010. Analytical solutions for tsunami runup on a plane beach: single waves, N-waves and transient waves. J Fluid Mech. 645:27–57. doi: 10.1017/S0022112009992485
  • Marrone S, Antuono M, Colagrossi A, Colicchio G, Le Touzé D, Graziani G. 2011. δ-SPH model for simulating violent impact flows. Comput Methods Appl Mech Eng. 200:1526–1542. doi: 10.1016/j.cma.2010.12.016
  • Mayrhofer A. 2014. An inverstigation into wall three dimensional turbulent flows using smoothed particle hydrodynamics. [place unknown]: University of Manchester.
  • Mayrhofer A, Rogers BD, Violeau D, Ferrand M. 2013. Investigation of wall bounded flows using SPH and the unified semi-analytical wall boundary conditions. Comput Phys Commun. 184:2515–2527. doi: 10.1016/j.cpc.2013.07.004
  • Mokos A, Rogers BD, Stansby PK, Domínguez JM. 2015. Multi-phase SPH modelling of violent hydrodynamics on GPUs. Comput Phys Commun. 196:304–316. doi: 10.1016/j.cpc.2015.06.020
  • Molteni D, Colagrossi A. 2009. A simple procedure to improve the pressure evaluation in hydrodynamic context using the SPH. Comput Phys Commun. 180:861–872. doi: 10.1016/j.cpc.2008.12.004
  • Monaghan JJ. 2005. Smoothed particle hydrodynamics. Reports Prog Phys. 68:1703–1759. doi: 10.1088/0034-4885/68/8/R01
  • Morris JP, Fox PJ, Zhu Y. 1997. Modeling low Reynolds number incompressible flows using SPH. J Comput Phys. 136:214–226. doi: 10.1006/jcph.1997.5776
  • Neves MG, Reis MT, Didier E. 2010. Comparisons of wave overtopping at coastal structures calculated with Amazon. Cobras-Uc and Sphysics. Proc. ECCOMAS CFD 2010, V European Conference on Computational Fluid Dynamics. Vol. 14.
  • Oger G, Marrone S, Le Touzé D, de Leffe M. 2016. SPH accuracy improvement through the combination of a quasi-Lagrangian shifting transport velocity and consistent ALE formalisms. J Comput Phys. 313:76–98. doi: 10.1016/j.jcp.2016.02.039
  • De Padova D, Dalrymple RA, Mossa M. 2014. Analysis of the artificial viscosity in the smoothed particle hydrodynamics modelling of regular waves. J Hydraul Res. 52:836–848. doi: 10.1080/00221686.2014.932853
  • Park JC, Kim MH, Miyata H. 1999. Fully non-linear free-surface simulations by a 3D viscous numerical wave tank. Int J Numer Methods Fluids. 29:685–703. doi: 10.1002/(SICI)1097-0363(19990330)29:6<685::AID-FLD807>3.0.CO;2-D
  • Perić R, Abdel-Maksoud M. 2016. Reliable damping of free-surface waves in numerical simulations. Sh Technol Res. 63:1–13. doi: 10.1080/09377255.2015.1119921
  • Ramsden JD. 1996. Forces on a vertical wall due to long waves, bores, and dry-bed surges. J Waterw Port, Coastal. Ocean Eng. 122:134–141. doi: 10.1061/(ASCE)0733-950X(1996)122:3(134)
  • Rustico E, Bilotta G, Herault A, Del Negro C, Gallo G. 2014. Advances in multi-GPU smoothed particle hydrodynamics simulations. IEEE Trans Parallel Distrib Syst. 25:43–52. doi: 10.1109/TPDS.2012.340
  • Shao S, Ji C, Graham DI, Reeve DE, James PW, Chadwick AJ. 2006. Simulation of wave overtopping by an incompressible SPH model. Coast Eng. 53:723–735. doi: 10.1016/j.coastaleng.2006.02.005
  • Soulsby R, Smallman J. 1986. A direct method of calculating bottom orbital velocity under waves. Report number SR 76, HR Wallingford.
  • Sun PN, Colagrossi A, Marrone S, Antuono M, Zhang AM. 2019. A consistent approach to particle shifting in the δ-Plus-SPH model. Comput Methods Appl Mech Eng. 348:912–934. doi: 10.1016/j.cma.2019.01.045
  • Vila JP. 2002. On particle weighted methods and smooth particle hydrodynamics. Math Model Methods Appl Sci. 09:161–209. doi: 10.1142/S0218202599000117
  • Violeau D. 2012. Fluid mechanics and the SPH method: theory and applications. Oxford: Oxford University Press.
  • Violeau D, Leroy A. 2014. On the maximum time step in weakly compressible SPH. J Comput Phys. 256:388–415. doi: 10.1016/j.jcp.2013.09.001
  • Violeau D, Rogers BD. 2016. Smoothed particle hydrodynamics (SPH) for free-surface flows: past, present and future. J Hydraul Res. 54:1–26. doi: 10.1080/00221686.2015.1119209
  • Wendland H. 1995. Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree. Adv Comput Math. 4:389–396. doi: 10.1007/BF02123482

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.