144
Views
7
CrossRef citations to date
0
Altmetric
Research Article

Liquid compressibility effect on the acoustic generation of free radicals

ORCID Icon, ORCID Icon &
Pages 247-261 | Received 13 Mar 2019, Accepted 05 May 2020, Published online: 20 Jul 2020

References

  • Adewuyi YG. 2001. Sonochemistry: environmental science and engineering applications. Ind Eng Chem Res. 40:4681–4715. doi: 10.1021/ie010096l
  • Asakura Y, Maebayashi M, Matsuoka T, Koda S. 2007. Characterization of sonochemical reactors by chemical dosimetry. Electr Commun Japan. 90:1–8. doi: 10.1002/ecjc.20315
  • Ashokkumar M. 2011. The characterization of acoustic cavitation bubbles – an overview. Ultrason Sonochem. 18:864–872. doi: 10.1016/j.ultsonch.2010.11.016
  • Besant W. 1859. Treatise on hydrostatics and hydrodynamics. London: Deighton.
  • Bhangu SK, Ashokkumar M. 2016. Theory of sonochemistry. Top Curr Chem. 374:56.
  • Brotchie A, Grieser F, Ashokkumar M. 2009. Effect of power and frequency on bubble-size distributions in acoustic cavitation. Phys Rev Lett. 102:1–4. doi: 10.1103/PhysRevLett.102.084302
  • Brotchie A, Statham T, Zhou M, Dharmarathne L, Grieser F, Ashokkumar M. 2010. Acoustic bubble sizes, coalescence, and sonochemical activity in aqueous electrolyte solutions saturated with different gases. Langmuir. 26:12690–12695. doi: 10.1021/la1017104
  • Cole RH. 1948. Underwater explosions. Princeton.
  • Colussi AJ, Weavers LK, Hoffmann MR, Linda K, Weavers A, Hoffmann MR, Colussi AJ, Weavers LK, Hoffmann MR. 1998. Chemical bubble dynamics and quantitative sonochemistry. J Phys Chem A. 102:6927–6934. doi: 10.1021/jp980930t
  • Didenko YT, McNamara WB, Suslick KS. 1999. Hot spot conditions during multi-bubble cavitation, in Sonochemistry and Sonoluminescence, Crum, L. A.; Mason, T. J.; Reisse, J.; Suslick, K.S., eds. Kluwer Publishers: Dordrecht, Netherlands. J Am Chem Soc. 191–204.
  • Feng ZC, Leal LG. 1997. Nonlinear bubble dynamics. Annu Rev Fluid Mech. 29:201–243. doi: 10.1146/annurev.fluid.29.1.201
  • Fuster D, Dopazo C, Hauke G. 2011. Liquid compressibility effects during the collapse of a single cavitating bubble. J Acoust Soc Am. 129:122–131. doi: 10.1121/1.3502464
  • Gilmore FR. 1952. The growth or collapse of a spherical bubble in a viscous compressible liquid. Report No. 26-4. California: Hydrodynamics Laboratory.
  • Gogate PR, Pandit AB. 2000. Engineering design method for cavitational reactors: I. Sonochemical reactors. AIChE J. 46:372–379. doi: 10.1002/aic.690460215
  • Hao Y, Prosperetti A. 1999. The dynamics of vapor bubbles in acoustic pressure fields. Phys Fluids. 11:2008–2019. doi: 10.1063/1.870064
  • Herring C. 1941. The theory of the pulsations of the gas bubbles produced by an underwater explosion. US Nat Def Res Comm Report Rep No 236.
  • Hilgenfeldt S, Brenner MP, Grossmann S, Lohse D. 1998. Analysis of Rayleigh-Plesset dynamics for sonoluminescing bubbles. J Fluid Mech. 365:171–204. doi: 10.1017/S0022112098001207
  • Keller JB, Kolodner II. 1956. Damping of underwater explosion bubble oscillations. J Appl Phys. 27:1152–1161. doi: 10.1063/1.1722221
  • Keller JB, Miksis M. 1980. Bubble oscillations of large amplitude. J Acoust Soc Am. 68:628–633. doi: 10.1121/1.384720
  • Kerabchi N, Merouani S, Hamdaoui O. 2018. Liquid depth effect on the acoustic generation of hydroxyl radical for large scale sonochemical reactors. Sep Purif Technol. 206:118–130. doi: 10.1016/j.seppur.2018.05.039
  • Lauterborn W. 1976. Numerical investigation of nonlinear oscillations of gas bubbles in liquids. J Acoust Soc Am. 59:283–293. doi: 10.1121/1.380884
  • Lee J, Ashokkumar M, Kentish S, Grieser F. 2005. Determination of the size distribution of sonoluminescence bubbles in a pulsed acoustic field. J Am Chem Soc. 127:16810–16811. doi: 10.1021/ja0566432
  • Leighton TG. 1994. The acoustic bubble. London: Academic Press.
  • Lin H, Storey BD, Szeri AJ. 2002. Inertially driven inhomogeneities in violently collapsing bubbles: the validity of the Rayleigh-Plesset equation. J Fluid Mech. 452:145–162. doi: 10.1017/S0022112001006693
  • Makino K, Mossoba MM, Riesz P. 1982. Chemical effects of ultrasound on aqueous solutions. Evidence for •OH an •H by spin trapping. J Am Chem Soc. 104:3537–3539. doi: 10.1021/ja00376a064
  • McNamara IIIWB, Didenko YT, Suslick KS. 2003. Pressure during sonoluminescence. J Phys Chem B. 107:7303–7306. doi: 10.1021/jp034236b
  • Merouani S, Hamdaoui O, Rezgui Y, Guemini M. 2013. Effects of ultrasound frequency and acoustic amplitude on the size of sonochemically active bubbles-theoretical study. Ultrason Sonochem. 20:815–819. doi: 10.1016/j.ultsonch.2012.10.015
  • Merouani S, Hamdaoui O, Rezgui Y, Guemini M. 2014a. Theoretical estimation of the temperature and pressure within collapsing acoustical bubbles. Ultrason Sonochem. 21:53–59. doi: 10.1016/j.ultsonch.2013.05.008
  • Merouani S, Hamdaoui O, Rezgui Y, Guemini M. 2014b. Sensitivity of free radicals production in acoustically driven bubble to the ultrasonic frequency and nature of dissolved gases. Ultrason Sonochem. 22:41–50. doi: 10.1016/j.ultsonch.2014.07.011
  • Merouani S, Hamdaoui O, Rezgui Y, Guemini M. 2014c. Energy analysis during acoustic bubble oscillations: Relationship between bubble energy and sonochemical parameters. Ultrasonics. 54:227–232. doi: 10.1016/j.ultras.2013.04.014
  • Merouani S, Hamdaoui O, Rezgui Y, Guemini M. 2014d. Theoretical procedure for the characterization of acoustic cavitation bubbles. Acta Acust United Acust. 100:823–833. doi: 10.3813/AAA.918762
  • Merouani S, Hamdaoui O, Rezgui Y, Guemini M. 2015. Mechanism of the sonochemical production of hydrogen. Int J Hydrogen Energy. 40:4056–4064. doi: 10.1016/j.ijhydene.2015.01.150
  • Merouani S, Hamdaoui O, Rezgui Y, Guemini M. 2016. Computational engineering study of hydrogen production via ultrasonic cavitation in water. Int J Hydrogen Energy. 41:832–844. doi: 10.1016/j.ijhydene.2015.11.058
  • Merouani S, Hamdaoui O, Saoudi F, Chiha M. 2010. Influence of experimental parameters on sonochemistry dosimetries: KI oxidation, Fricke reaction and H2O2 production. J Hazard Mater. 178:1007–1014. doi: 10.1016/j.jhazmat.2010.02.039
  • Moss WC. 1997. Understanding the periodic driving pressure in the Rayleigh–Plesset equation. J Acoust Soc Am. 101:1187–1190. doi: 10.1121/1.418111
  • Nazari-Mahroo H, Pasandideh K, Navid HA, Sadighi-Bonabi R. 2018. Influence of liquid compressibility on the dynamics of single bubble sonoluminescence. Phys Lett Sect A Gen At Solid State Phys. 382:1962–1967.
  • Neppiras EAA. 1980. Acoustic cavitation. Phys Lett. 61:159–251.
  • Prosperetti A, Lezzi A. 1986. Bubble dynamics in a compressible liquid. part 1. First-order theory. J Fluid Mech. 168:457–478. doi: 10.1017/S0022112086000460
  • Rae J, Ashokkumar M, Eulaerts O, Von Sonntag C, Reisse J, Grieser F. 2005. Estimation of ultrasound induced cavitation bubble temperatures in aqueous solutions. Ultrason Sonochem. 12:325–329. doi: 10.1016/j.ultsonch.2004.06.007
  • Rayleigh L. 1917. On the pressure developed in a liquid during the collapse of a spherical cavity. L Edinb Dubl Phil Mag. 34:94–98. doi: 10.1080/14786440808635681
  • Storey BD, Szeri AJ. 2001. A reduced model of cavitation physics for use in sonochemistry. Proc R Soc London A. 457:1685–1700. doi: 10.1098/rspa.2001.0784
  • Suslick KSK, Didenko Y, Fang MMM, Hyeon T, Kolbeck KKJ, McNamara IIIWBW, Mdleleni MMM, Wong M. 1999. Acoustic cavitation and its consequences. Philos Trans R Soc A. 357:335–353. doi: 10.1098/rsta.1999.0330
  • Suslick KS, Eddingsaas NC, Flannigan DJ, Hopkins SD, Xu H. 2011. Extreme conditions during multibubble cavitation: sonoluminescence as a spectroscopic probe. Ultrason Sonochem. 18:842–846. doi: 10.1016/j.ultsonch.2010.12.012
  • Thompson LH, Doraiswamy LK. 1999. Sonochemistry: science and engineering. Ind Eng Chem Res. 38:1215–1249. doi: 10.1021/ie9804172
  • Toegel R, Lohse D. 2003. Phase diagrams for sonoluminescing bubbles: a comparison between experiment and theory. J Chem Phys. 118:1863–1875. doi: 10.1063/1.1531610
  • Vichare NP, Senthilkumar P, Moholkar VS, Gogate PR, Pandit AB. 2000. Energy analysis in acoustic cavitation. Ind Eng Chem Res. 39:1480–1486. doi: 10.1021/ie9906159
  • Wei Z, Villamena FA, Weavers LK. 2017. Kinetics and mechanism of ultrasonic activation of persulfate: an in situ EPR spin trapping study. Environ Sci Technol. 51:3410–3417. doi: 10.1021/acs.est.6b05392
  • Yasui K. 1998. Effect of non-equilibrium evaporation and condensation on bubble dynamics near the sonoluminescence threshold. Ultrasonics. 36:575–580. doi: 10.1016/S0041-624X(97)00107-8
  • Yasui K. 2002. Influence of ultrasonic frequency on multibubble sonoluminescence. J Acoust Soc Am. 112:1405–1413. doi: 10.1121/1.1502898
  • Yasui K, Tuziuti T, Iida Y. 2004. Optimum bubble temperature for the sonochemical production of oxidants. Ultrasonics. 42:579–584. doi: 10.1016/j.ultras.2003.12.005
  • Yasui K, Tuziuti T, Lee J, Kozuka T, Towata A, Iida Y. 2008. The range of ambient radius for an active bubble in sonoluminescence and sonochemical reactions. J Chem Phys. 128:184705. doi: 10.1063/1.2919119
  • Yasui K, Tuziuti T, Sivakumar M, Iida Y. 2005. Theoretical study of single-bubble sonochemistry. J Chem Phys. 122:224706. doi: 10.1063/1.1925607

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.