253
Views
2
CrossRef citations to date
0
Altmetric
Articles

The 1974 Tubarão River flood, Brazil: reconstruction of the catastrophic flood

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 231-245 | Received 20 Mar 2020, Accepted 27 May 2020, Published online: 09 Jul 2020

References

  • Assunção VK. 2018. Memories of the flood of 1974 and the production of space in Tubarão (SC). Mercator. Fortaleza. 17:1–16. Doi: 10.4215/rm2018.e17001
  • Balasch JC, Ruiz-Bellet JL, Tuset J, Oliva JM. 2010. Reconstruction of the 1874 Santa Tecla’s rainstorm in Western Catalonia (NE Spain) from floodmarks and historical accounts. Nat Hazards Earth Syst Sci. 10:2317–2325. Doi: 10.5194/nhess-10-2317-2010
  • Bates PD, Horritt MS, Fewtrell TJ. 2010. A simple inertial formulation of the shallow water equations for efficient two-dimensional flood inundation modelling. J Hydrol. 387:33–45. Doi: 10.1016/j.jhydrol.2010.03.027
  • Bigarrella JJ, Bigarrella IEK, Jost H. 1975. Catastrophic events in the Tubarão area. Boletim Paranaense de Geociências. 33:200–206.
  • BlöschL G, Bierkens MFP, Chambel A, Cudennec C, Destouni G, Fiori A, et al. 2019. Twenty-three unsolved problems in hydrology – a community perspective. Hydrol Sci J. 64(10):1141–1158. Doi: 10.1080/02626667.2019.1620507
  • Brázdil R, Demarée GR, Kiss A, Dobrovolný P, Chromá K, Trnka M, Dolák L, Reznícková L, Zahradnícek P, Limanowka D, Jourdain S. 2019. The extreme drought of 1842 in Europe as described by both documentary data and instrumental measurements. Clim Past. 15:1861–1884. Doi: 10.5194/cp-15-1861-2019
  • Brázdil R, Kundzewicz ZW, Benito G. 2006. Historical hydrology for studying flood risk in Europe. Hydrol Sci J. 51(5):739–764. Special issue: Historical Hydrology. Doi: 10.1623/hysj.51.5.739. doi: 10.1623/hysj.51.5.739
  • Brazil. 2017. Centro Nacional de Monitoramento e Alertas de Desastres Naturais. Estudos apontam que processos costeiros/oceânicos impactam os municípios litorâneos monitorados pelo CEMADEN. Notícia veiculada em 27 de dezembro de 2017.
  • Bürger K, Dostal P, Seidel J, Imbery F, Barriendos M, Mayer H, Glaser R. 2006. Hydrometeorological reconstruction of the 1824 flood event in the Neckar River basin (southwest Germany). Hydrol Sci J. 51(5):864–877. Special issue: Historical Hydrology. Doi: 10.1623/hysj.51.5.864.
  • Centro Universitário de Estudos e Pesquisas sobre Desastres (CEPED). Universidade Federal de Santa Catarina. Atlas brasileiro de desastres naturais: 1991 a 2012. Centro Universitário de Estudos e Pesquisas sobre Desastres. 2. ed. rev. ampl. – Florianópolis: CEPED UFSC, 2013. 168 p.
  • Collischonn W, Allasia D, Silva BC, Tucci CEM. 2007. The MGB-IPH model for large-scale rainfall-runoff modelling. Hydrol Sci J. 52(5):878–897. Doi: 10.1623/hysj.52.5.878
  • Elleder L. 2010. Reconstruction of the 1784 flood hydrograph for the Vltava River in Prague, Czech Republic. Global Planet Change. 70(1-4):117–124. Doi: 10.1016/j.gloplacha.2009.11.012
  • EM-DAT: The Emergency Events Database. 2019. Université catholique de Louvain (UCLouvain) - CRED, D. Guha-Sapir. Brussels, Belgium. Database update: January 29, 2019 [accessed 2019 Mar 21].  <www.emdat.be>.
  • European Union. 2007. Directive 2007/60/EC of the European Parliament and of the Council of 23 October 2007 on the assessment and management of flood risks. Off J European Union. 1:1–18.
  • Gupta HV, Kling H, Yilmaz KK, Martinez GF. 2009. Decomposition of the mean squared error and NSE performance criteria: implications for improving hydrological modelling. J Hydrol. 377:80–91. Doi: 10.1016/j.jhydrol.2009.08.003
  • Gupta HV, Sorrooshian S, Yapo PO. 1999. Status of automatic calibration for hydrologic models: comparison with multilevel expert calibration. J Hydrol Eng. 4(2):135–143. Doi: 10.1061/(ASCE)1084-0699(1999)4:2(135)
  • Horrit MS, Di Baldassarre G, Bates PD, Brath A. 2007. Comparing the performance of a 2-D finite elemento and a 2-D finite volume model of floodplain inundation using airborne SAR imagery. Hydrol Process. 2:2745–2759. Doi: 10.1002/hyp.6486
  • INMET. 2018. Instituto Nacional de Meteorologia. Normais climatológicas do Brasil. Brasília, DF: 2018.
  • Klein AHF, Short AD, Bonetti J. 2016. Santa Catarina Beach systems. In: Short AD, Klein AHF, editors. Brazil Beach systems. Coastal research library, 17. Boca Raton, FL: Springer; p. 465–506.
  • Kobiyama M, Michel GP, Engster EC, Paixão MA. 2015. Historical analyses of debris flow disaster occurrences and of their scientific investigation in Brazil. Labor Engenho. 9(4):76–89. doi: 10.20396/lobore.v9i4.8639477
  • Lago PF. 1983. Calamidade: a enchente do Rio Tubarão. Florianópolis: UFSC.
  • Lima M, Rodrigues MLG, Sacco F, Cruz GS, Alves MPA. 2009. Análise da configuração atmosférica associada a eventos extremos de chuva no litoral do Estado de Santa Catarina, Sul do Brasil. In: Simpósio Internacional de Climatologia. 3. Gramado, RS: Sociedade Brasileira de Meteorologia; p. 1–17.
  • Lopes VAR, Fan FM, Pontes PRM, Siqueira VA, Collischonn W, Marques DM. 2018. A first integrated modelling of a river-lagoon large-scale hydrological system for forecasting purposes. J Hydrol. 565:177–196. Doi: 10.1016/j.jhydrol.2018.08.011
  • Lorenzo-Lacruz J, Amengual A, Garcia C, Morán-Tejeda E, Homar V, Maimó-Far A, Hermoso A, Ramis C, Romero R. 2019. Hydro-meteorological reconstruction and geomorphological impact assessment of the October 2018 catastrophic flash flood at Sant Llorenç. Mallorca (Spain). Nat Hazards Earth Syst Sci. 19:2597–2617. Doi: 10.5194/nhess-19-2597-2019
  • Machado CC. 2005. Tubarão 1974: Fatos E Relatos Da Grande Enchente. Tubarão: Ed. Unisul.
  • Marques R. 2010. Variabilidade da precipitação na bacia hidrográfica do Rio Tubarão/SC de 1946 a 2006. 206 f. Dissertação (Mestrado) – Curso de Pós-Graduação em Geografia. Florianópolis: Universidade Federal de Santa Catarina.
  • Masoero A, Claps P, Asselman NEM, Mosselman E, Di Baldassarre G. 2013. Reconstruction and analysis of the Po River inundation of 1951. Hydrol Process. 27(9):1341–1348. Doi: 10.1002/hyp.9558
  • Mcmillan HK, Westerberg IK, Krueger T. 2018. Hydrological data uncertainty and its implications. WIRES Water. 5:1–14. Doi: 10.1002/wat2.1319
  • Mctaggart-Cowan R, Bosart LF, Davis CA, Atallah EH, Gyakum JR, Emanuel KA. 2006. Analysis of Hurricane Catarina (2004). Monthly Weather Rev. 134:3029–3053. doi: 10.1175/MWR3330.1
  • Moftakhari HR, Salvadori G, Aghakouchak A, Sanders BF, Matthew RA. 2017. Compounding effects of sea level rise and fluvial flooding. Proc Natl Acad Sci USA. 114(37):1–6. Doi: 10.1073/pnas.1620325114
  • Moriasi DN, Arnold JG, Van Liew MW, Bingner RL, Harmel RD, Veith TL. 2007. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Am Soc Agric Biol Eng. 5(3):885–900. Doi: 10.13031/2013.23153
  • Nash JE, Sutcliffe JV. 1970. River flow forecasting through conceptual models part I – a discussion of principles. J Hydrol. 10:282–290. Doi: 10.1016/0022-1694(70)90255-6
  • NCDC/NOAA. 2018 National climatic data center/national oceanic and atmospheric administration. Marine Beaufort Scale [accessed 2018 Nov 26]. https://www.ncdc.noaa.gov/sites/default/files/attachments/Marine_Beaufort_Scale.pdf.
  • Paiva RCD, Buarque DC, Collischonn W, Bonnet MP, Frappart F, Calmant S, Mendes CAB. 2013. Large-scale hydrologic and hydrodynamic modeling of the Amazon River basin. Water Resour Res. 49:1226–1243. doi: 10.1002/wrcr.20067
  • Pontes PRM, Fan FM, Fleischmann AS, Paiva RCD, Buarque DC, Siqueira VA, Jardim PF, Sorribas MV, Collischonn W. 2017. MGB-IPH model for hydrological and hydraulic simulation of large floodplain river systems coupled with open source GIS. Environ Model Softw. 94:1–20. Doi: 10.1016/j.envsoft.2017.03.029
  • Pontius Jr. RG, Parmentier B. 2014. Recommendations for using the relative operationg characteristics (ROC). Landsc Ecol. 29(3):1–16. Doi: 10.1007/s10980-013-9984-8
  • Remo JWF, Pinter N. 2007. Retro-modeling the Middle Mississipi River. J Hydrol. 337:421–435. Doi: 10.1016/j.jhydrol.2007.02.008
  • Ribeiro Neto A, Cirilo JA, Dantas CEO, Silva ER. 2015. Caracterização da formação de cheias na bacia do rio Una em Pernambuco: simulação hidrológica-hidrodinâmica. Revista Brasileira de Recursos Hídricos. 20(2):394–403. Doi: 10.21168/rbrh.v20n2.p394-403
  • Rivera-Trejo F, Soto-Cortés G, Méndez-Antonio B. 2010. The 2007 flood in Tabasco, Mexico: an integral analysis of a devastating phenomenon. Int J River Basin Manag. 8(3-4):255–267. Doi: 10.1080/15715124.2010.508746
  • Rodríguez MG, Nicolodi JL, Gutiérrez OQ, Losada VC, Hermosa AE. 2016. Brazilian coastal processes: wind,wave climate and sea level. In: Short A. D., Klein A. H. F., editors. Brazil Beach systems. Coastal research library, 17. Boca Raton, FL: Springer; p. 37–66.
  • Ruiz-Bellet JL, Balasch JC, Tuset J, Barriendos M, Mazon J, Pino D. 2015. Historical, hydraulic, hydrological and meteorological reconstruction of 1874 Santa Tecla flash floods in Catalonia (NE Iberian Peninsula). J Hydrol. 524:279–295. Doi: 10.1016/j.jhydrol.2015.02.023
  • Segura-Beltrán F, Sanchis-Ibor C, Morales-Hernández M, González-Sanchis M, Bussi G, Ortiz E. 2016. Using post-flood surveys and geomorphologic mapping to evaluate hydrological and hydraulic models: The flash flood of the Girona River (Spain) in 2007. J Hydrol. 541:310–329. Doi: 10.1016/j.jhydrol.2016.04.039
  • Sudhaus D, Seidel J, Bürger K, Dostal P, Imbery F, Mayer H, Glaser R, Konold W. 2008. Discharges of past flood events based on historical river profiles. Hydrol Earth Syst Sci. 12:1201–1209. Doi: 10.5194/hess-12-1201-2008
  • Sy B, Frischknecht C, Dao H, Consuegra D, Giuliani G. 2020. Reconstituing past flood events: contribution of citizen science. Hydrol Earth Syst Sci. 24:61–74. Doi: 10.5194/hess-24-61-2020
  • Vanelli FM. 2019. Reconstrução hidrológica e hidrodinâmica do evento de 1974 em Tubarão, SC [master’s thesis]. Porto Alegre (RS): Universidade Federal do Rio Grande do Sul. Available on https://lume.ufrgs.br/handle/10183/194861
  • Velásquez N, Hoyos CD, Vélez JI, Zapata E. 2020. Reconstructing the Salgar 2015 flash flood using radar retrievals and a conceptual modeling framework: a basis for a better flood generating mechanisms discrimination. Hydrol Earth Syst Sci Discuss. 24:1367–1392. Doi: 10.5194/hess-2018-452 doi: 10.5194/hess-24-1367-2020
  • Vettoretti A. 1992. História de Tubarão das origens ao século XX. Tubarão, SC: Ed. Prefeitura Municipal de Tubarão, 426 p.VETTORETTI, A. 2004. Estação da Piedade. Tubarão, SC: Ed. Copiart. 169 p.
  • Vettoretti A. 2004. Estação da Piedade. Tubarão, SC: Ed. Copiart.
  • WMO. 2008. Guide to hydrological practice: hydrology from measurement to hydrological information. Geneva: World Meteorological Organization. 168, 6.ed.
  • Yang L, Li J, Sun H, Guo Y, Engel BA. 2018. Calculation of nonstationary flood return period considering historical extraordinary flood events. J Flood Risk Manage. 12(3):e12463. Doi: 10.1111/jfr3.12463

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.