312
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Extreme streamflow time series analysis: trends, record length, and persistence

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 40-53 | Received 11 Apr 2021, Accepted 12 Jan 2022, Published online: 29 Jan 2022

References

  • Alves BCC, Souza Filho F, Silveira C. 2013. Análise de tendências e padrões de variação das séries históricas de vazões do operador nacional do sistema (ons). Braz J Water Resour. 18(4):19–34. DOI:10.21168/rbrh.v18n4.p19-34.
  • Back AJ. 2001. Aplicação de análise estatística para identificação de tendências climáticas. Pesqui agropecu bras. 36(5):717–726. DOI: 10.1590/S0100-204X2001000500001.
  • Bartiko D, Chaffe PLB, Bonumá NB. 2017. Nonstationarity in maximum annual daily streamflow series from southern Brazil. Braz J Water Resour. 22(48). DOI:https://doi.org/10.1590/2318-0331.0217170054.
  • Bartiko D, Oliveira DY, Bonumá NB, Chaffe PLB. 2019. Spatial and seasonal patterns of flood change across Brazil. Hydrol Sci J. 64(9):1071–1079. DOI:https://doi.org/10.1080/02626667.2019.161-9081.
  • Bellabas SC, Benmamar S, Dehni A. 2020. Study and analysis of the streamflow decline in North Algeria. J Appl Water Eng Res. 8:1–25. DOI:10.1080/23249676.2020.1831974.
  • Chen Y, Guan Y, Shao G, Zhang D. 2016. Investigating trends in streamflow and precipitation in Huangfuchuan basin with wavelet analysis and the Mann-Kendall test. Water. 8(77):32. DOI:10.3390/w8030077.
  • Coen MC, Andrews E, Bigi A, Romanens G, Martucci G, Vuilleumier L. 2020. Effects of the prewhitening method, the time granularity and the time segmentation on the Mann-Kendall trend detection and the associated Sen's slope. Atmos Meas Tech Discuss. 1–28. DOI: https://doi.org/10.5194/amt-2020-178.
  • De Oliveira MMF, De Oliveira JLF, Fernandes PJF, Ebecken NFF. 2020. Análise de Tendências Anuais e Sazonais de Extremos da Temperatura da Superfície do Mar Próximo à Costa da América do Sul no Período de 1979 a 2018. Rev Bras de Geogr Fís. 13(6):2531. DOI: 10.26848/rbgf.v13.6.p2531-2552.
  • De Souza AS, Amorim RS, Reis DS. 2020. Influência da correlação temporal e da multiplicidade de testes na detecção de tendências de índices de chuva no território brasileiro. Rev Bras de Climatol. 26:107–129. DOI: https://doi.org/10.5380/abclima.v26i0.68124.
  • Detzel DHM. 2015. Modelagem de séries hidrológicas: uma abordagem de múltiplas escalas temporais. Curitiba (PR): Universidade Federal do Paraná.
  • Dinpashoh Y, Mirabbasi R, Jhajharia D, Zare Abianeh H, Mostafaeipour A. 2014. Effect of short term and long-term persistence on Identification of temporal trends. J Hydrol Eng. 19(3):617–625. DOI: https://doi.org/10.1061/(ASCE)HE.1943-5584.0000819.
  • Dixon H, Lawler DM, Shamseldin AY, Webster P. 2006. The effect of record length on the analysis of river flow trends in Wales and Central England. Conference: Fifth FRIEND World Conference, Cuba, 2006, International Association of Hydrological Sciences. Volume: In: Demuth, S. et al., editors. Climate Variability and Change – Hydrological Impacts; IAHS; Publ. 308. p. 490–495.
  • Do HX, Westra S, Leonard M. 2017. A global-scale investigation of trends in annual maximum streamflow. J Hydrol. 552:28–43. DOI: 10.1016/j.jhydrol.2017.06.015.
  • Dos Santos CA, De Lima AMM, Farias MHCS, Aires URV, De Oliveira Serrão EA. 2016. Análise estatística da não estacionariedade de séries temporais de vazão máxima anual diária na bacia hidrográfica do rio pardo. HOLOS. 7:179–193. DOI: 10.15628/holos.2016.4892.
  • Dudley RW, Hirsch RM, Archfield SA, Blum AG, Renard B. 2020. Low streamflow trends at human-impacted and reference basins in the United States. J Hydrol. 580:124254. DOI: 10.1016/j.jhydrol.2019.124254.
  • Escanciano JC, Lobato IN. 2009. An automatic Portmanteau test for serial correlation. J Econom. 151(2):140–149. DOI: 10.1016/j.jeconom.2009.03.001.
  • François B, Schlef KE, Wi S, Brown CM. 2019. Design considerations for riverine floods in a changing climate – a review.J Hydrol. 574:557–573. DOI: 10.1016/j.jhydrol.2019.04.068.
  • Güçlü YS. 2020. Improved visualization for trend analysis by comparing with classical Mann-Kendall test and ITA.J Hydrol. 584:124674. DOI: 10.1016/j.jhydrol.2020.124674.
  • Gudmundsson L, Leonard M, Do HX, Westra S, Seneviratne SI. 2019. Observed trends in global indicators of mean and extreme streamflow. Geophys Res Lett. 46(2):756–766. DOI: 10.1029/2018gl079725.
  • Hamed KH. 2008. Trend detection in hydrologic data: the Mann–Kendall trend test under the scaling hypothesis. J Hydrol. 349(3–4):350–363. DOI: 10.1016/j.jhydrol.2007.11.009.
  • Harrison TD, Gilmour G, McNeill MT, Armour N, McIlroy L. 2020. Survey of imposex in Nucella lapillus as an indicator of tributyltin pollution in northern Irish coastal waters, 2004 to 2017. Mar Pollut Bull. 159:111474. DOI: 10.1016/j.marpolbul.2020.111474.
  • Hidalgo JSG, Brunetti M, Jiménez-Castañeda A, Salinas-Solé C, Peña-Ângulo D. 2017. The effect of length and starting year on trend analyses of temperatures in Spanish mainland (1951–2010). A general approach (I). 19th EGU General Assembly, EGU2017, Proceedings from the Conference held Apr 23–28, Vienna, Austria.
  • Isensee LJ, Pinheiro A, Detzel DHM. 2021. Dam hydrological risk and the design flood under non-stationary conditions. Water Resour Manag. DOI: 10.1007/s11269-021-02798-3.
  • Jaiswal RK, Lohani AK, Tiwari HL. 2015. Statistical analysis for change detection and trend assessment in climatological parameters. Environ Process. 2:729–749. DOI: 10.1007/s40710-015-0105-3.
  • Junqueira HS, de Almeida LMF, de SOUZA TS, dos SANTOS PN. 2020. Análise da Variação Sazonal e de Tendências na Precipitação Pluviométrica no Município de Juazeiro-BA. Rev Bras Geogr Fís. 13(6):2641. DOI: 10.26848/rbgf.v13.6.p2641-2649.
  • Khaliq M, Ouarda T, Gachon P, Sushama L, St-Hilaire A. 2009. Identification of hydrological trends in the presence of serial and cross correlations: a review of selected methods and their application to annual flow regimes of Canadian rivers. J Hydrol. 368(1–4):117–130. DOI: 10.1016/j.jhydrol.2009.01.035.
  • Koscielny-Bunde E, Kantelhardt JW, Braun P, Bunde A, Havlin S. 2006. Long-term persistence and multifractality of river runoff records: detrended fluctuation studies. J Hydrol. 322(1–4):120–137. DOI: 10.1016/j.jhydrol.2005.03.004.
  • Koutsoyiannis D, Montanari A. 2007. Statistical analysis of hydroclimatic time series: uncertainty and insights. Water Resour Res. 43(5):2007. DOI: 10.1029/2006wr005592.
  • Kumar S, Merwade V, Kam J, Thurner K. 2009. Streamflow trends in Indiana: effects of long term persistence, precipitation and subsurface drains. J Hydrol. 374(1–2):171–183. DOI: 10.1016/j.jhydrol.2009.06.012.
  • Kundzewicz Z, Robson A. 2000. Detecting Trend and Other Changes in Hydrological Data. Geneva: WMO.
  • Lira FA, Cardoso AO. 2018. Estudo de tendência de vazões de rios das principais bacias hidrográficas brasileiras. Rev Bras de Ciênc Ambient. 48:21–37. DOI: https://doi.org/10.5327/z2176-947820-180273.
  • Machekposhti K, Sedghi H, Telvari A, Babazadeh H. 2019. The Karkheh river streamflow forecast based on the modelling of time series. Adv Res Civil Eng. 1(3):49–57. DOI: 10.30469/ARCE.2019.89282.
  • Mahdi E, Mcleod AI. 2020. Package portes. Cran.R-project.
  • Montanari A, Rosso R, Taqqu MS. 2000. A seasonal fractional ARIMA model applied to the Nile River monthly flows at Aswan. Water Resour Res. 36(5):1249–1259. DOI: 10.1029/2000WR900012.
  • Moreira J, Aquino APV, Mesquita AA, Muniz MA, Serrano ROP. 2019. Stationarity in annual daily maximum streamflow series in the Hydrographic Basin of the Upper Juruá river, western Amazon. Rev Bras de Geogr Fís. 12(2):705–713. DOI: 10.26848/rbgf.v12.2.p705-713.
  • Naguettini M, Pinto EJA. 2007. Hidrologia Estatística. Belo Horizonte: CPRM.
  • Nashwan MS, Ismail T, Ahmed K. 2019. Non-stationary analysis of extreme rainfall in peninsular Malaysia. J Sustain Sci Manag. 14:17–34.
  • Neves GL, Beruski GC, das Virgens Filho JS, Mauad FF. 2020. Variability and trend of air temperature and rainfall at Ribeirão do Lobo hydrographic basin, Brazil. Rev Bras de Geogr Fís. 13(1):035. DOI: https://doi.org/10.26848/rbgf.v13.1.p035-048.
  • O'Brien NL. 2018. Approaches for nonstationary flood frequency and trend analyses for hydrometric data. [M.S. thesis]. Waterloo: University of Waterloo.
  • OCHA. 2019. Natural disasters in Latin America and the Caribbean: 2000–2019. New York: United Nations Office for the Coordination of Humanitarian Affairs.
  • Önöz B, Bayazit M. 2012. Block bootstrap for Mann-Kendall trend test of serially dependent data. Hydrol Process. 26(23):3552–3560. DOI: 10.1002/hyp.8438.
  • Patakamuri SK, O'Brien N. 2020. Package modifiedmk. Cran.R-project.
  • Penereiro JC, Badinger A, Maccheri NA, Meschiatti MC. 2018. Distribuições de tendências sazonais de temperatura média e precipitação nos biomas brasileiros. Rev Bras de Meteorol. 33(1):97–113. DOI: 10.1590/0102-7786331012.
  • Petrow T, Merz B. 2009. Trends in flood magnitude, frequency and seasonality in Germany in the period 1951–2002.J Hydrol. 371(1-4):129–141. DOI: https://doi.org/10.1016/j.jhydrol.2009.03.024.
  • Pinheiro A, Graciano RLG, Severo DL. 2013. Tendência das séries temporais de precipitação da região sul do brasil. Rev Bras Meteorol. 28(3):281–290. DOI: 10.1590/s0102-77862-013000300005.
  • Rahman S, Bowling L. 2019. Streamflow impacts of management and environmental change in the upper Wabash river basin.J Hydrol Eng. 24(3):05018034. DOI: 10.1061/(asce)he.1943-5584.0001750.
  • Razmi A, Golian S, Zahmatkesh Z. 2017. Non-stationary frequency analysis of extreme water level: application of annual maximum series and peak-over threshold approaches. Water Resour Manag. 31(7):2065–2083. DOI: 10.1007/s11269-017-1619-4.
  • Rosin C, Amorim R, Morais T. 2015. Análise de tendências hidrológicas na bacia do rio das mortes. Braz J Water Resour. 20(4):991–998. DOI: 10.21168/rbrh.v20n4.p991-998.
  • Sagarika S, Kalra A, Ahmad S. 2014. Evaluating the effect of persistence on long-term trends and analyzing step changes in streamflows of the continental United States. J Hydrol. 517:36–53. DOI: 10.1016/j.jhydrol.2014.05.002.
  • Sanches F, Verdum R, Fisch G. 2014. Long-term trend of daily rainfall in southwest of Rio Grande Do Sul: extreme events and the sandization. Re Bras Geogr Fís. 7(6):1100–1109. DOI: 10.5935/1984-2295.20140012.
  • Silva FDDS, Costa RL, Antônio MAV, Afonso EO, dos Santos DM, Mateus NPA, Antônio JF. 2018. Tendências observadas da evapotranspiração potencial no estado de Alagoas (1961-2016). Re Bras Geogr Fís. 11(1):028–043. DOI: 10.26848/rbgf.v11.1.p028-043.
  • SNIRH. 2020. HidroWeb. Brasília, DF: Sistema Nacional de Informações sobre Recursos Hídricos.
  • Stenico A, Beduschi C, Moraes J, Groppo J, Salemi L, Trevisan R. 2009. Análise do efeito da operação das barragens do sistema Cantareira no regime hidrológico do rio Piracicaba. Braz J Water Resour. 14(1):41–51. DOI: 10.21168/rbrh.v14n1.p41-51.
  • Svensson C, Kundzewicz ZW, Maurer T. 2005. Trend detection in river flow series: 2. Flood and low-flow index series / Détection de tendance dans des séries de débit fluvial: 2. Séries d'indices de crue et d'étiage. Hydrol Sci J. 50(5):824. DOI: 10.1623/hysj.2005.50.5.811.
  • Tan X, Gan TY. 2015. Nonstationary analysis of annual maximum streamflow of Canada. J Clim. 28(5):1788–1805. DOI: 10.1175/jcli-d-14-00538.1.
  • UNISDR. 2009. Terminology – disaster risk reduction. Geneva: The United Nations Office for Disaster Risk Reduction.
  • Villarini G, Serinaldi F, Smith JA, Krajewski WF. 2009. On the stationarity of annual flood peaks in the continental United States during the 20th century. Water Resour Res. 45(8). DOI: 10.1029/2008wr007645.
  • Von Storch H. 1999. Misuses of statistical analysis in climate research. In: Analysis of climate variability. New York (NY) : Springer Berlin Heidelberg; p. 11–26. DOI: 10.1007/978-3-662-03744-7_2.
  • Wang F, Shao W, Yu H, Kan G, He X, Zhang D, Ren M, Wang G. 2020. Re-evaluation of the power of the Mann-Kendall test for detecting monotonic trends in Hydrometeorological time series. Front Earth Sci. 8:14. DOI: 10.3389/feart.2020.00014.
  • Wang W, Chen Y, Becker S, Liu B. 2015. Linear trend detection in serially dependent Hydrometeorological data based on a variance correction Spearman Rho method. Water. 7:7045–7065. DOI: 10.3390/w7126673.
  • Weatherhead EC, Reinsel GC, Tiao GC, Meng XL, Choi D, Cheang WK, Keller T, DeLuisi J, Wuebbles DJ, etal ., 1998. Factors affecting the detection of trends: statistical considerations and applications to environmental data. J Geophys Res. 103(14):149–161. DOI: 10.1029/98JD00995.
  • Weron R. 2002. Estimating long-range dependence: finite sample properties and confidence intervals. Phy A: Stat Mech Appl. 312:285–299.
  • Weron R, Przybyłowicz B. 2000. Hurst analysis of electricity price dynamics. Phys A: Stat Mech Appl. 283(3-4):462–468. DOI: 10.1016/s0378-4371(00)00231-4.
  • Yue S, Pilon P, Phinney B, Cavadias G. 2002. The influence of autocorrelation on the ability to detect trend in hydrological series. Hydrol Process. 16(9):1807–1829. DOI: 10.1002/hyp.1095.
  • Yue S, Wang C. 2004. The Mann-Kendall test modified by effective sample size to detect trend in serially correlated hydrological series. Water Resour Manag. 18(3):201218. DOI: 10.1023/b:warm.0000043140.61082.60.
  • Zamani R, Mirabbasi R, Abdollahi S, Jhajharia D. 2017. Streamflow trend analysis by considering autocorrelation structure, long-term persistence, and hurst coefficient in a semi-arid region of Iran. Theor Appl Climatol. 129:33–45. DOI: 10.1007/s00704-016-1747-4.
  • Zhang Q, Gu X, Singh VP, Xiao M, Xu CY. 2014. Stationarity of annual flood peaks during 1951–2010 in the pearl river basin, China. J Hydrol. 519:32633274. DOI: 10.1016/j.jhydrol.2014.10.028.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.