221
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Baseflow index assessment for agriculture-industry led Ramganga river basin

ORCID Icon & ORCID Icon
Pages 407-421 | Received 13 Jul 2020, Accepted 25 Sep 2022, Published online: 14 Oct 2022

References

  • Ahiablame L, Sheshukov AY, Rahmani V, Moriasi D. 2017. Annual baseflow variations as influenced by climate variability and agricultural land use change in the Missouri river basin. Investig Coast Aquifers. 551:188–202. doi:10.1016/j.jhydrol.2017.05.055.
  • Anand J, Gosain AK, Khosa R, Srinivasan R. 2018. Regional scale hydrologic modeling for prediction of water balance, analysis of trends in streamflow and variations in streamflow: The case study of the Ganga river basin. J Hydrol Reg Stud. 16:32–53. doi:10.1016/j.ejrh.2018.02.007.
  • Anderson MG, Burt TP. 1980. Interpretation of recession flow. J Hydrol. 46:89–101. doi:10.1016/0022-1694(80)90037-2.
  • Arnold JG, Allen PM. 1999. Automated methods for estimating baseflow and ground water recharge from streamflow records. JAWRA J Am Water Resour Assoc. 35:411–424. doi:10.1111/j.1752-1688.1999.tb03599.x.
  • Arnold JG, Allen PM, Muttiah R, Bernhardt G. 1995. Automated base flow separation and recession analysis techniques. Groundwater. 33:1010–1018. doi:10.1111/j.1745-6584.1995.tb00046.x.
  • Baillie MN. 2005. Quantifying baseflow inputs to the San Pedro River: a geochemical approach [master’s thesis]. Tucson (Arizona): The University of Arizona.
  • Beven K. 2012. Rainfall-Runoff Modelling The Primer. 2nd ed. Lancaster University, UK: Wiley-Blackwell, John Wiley & Sons, Ltd.
  • Bloomfield JP, Allen DJ, Griffiths KJ. 2009. Examining geological controls on baseflow index (BFI) using regression analysis: An illustration from the Thames basin, UK. J Hydrol. 373:164–176. doi:10.1016/j.jhydrol.2009.04.025.
  • Brodie R, Sundaram B, Tottenham R, et al. 2007. An Overview of Tools for Assessing Groundwater-Surface Water Connectivity. Canberra: Bureau of Rural Sciences.
  • Collischonn W, Fan FM. 2013. Defining parameters for Eckhardt’s digital baseflow filter. Hydrol Process. 27:2614–2622. doi:10.1002/hyp.9391.
  • CWC. 2012a. Study of Environmental Evaluation of Ramganga River Valley Project in Uttar Pradesh. Environmental Impact Assessment Directorate, CWC, India.
  • CWC. 2012b. Details of Hydrological Observation Stations.
  • CWC. 2019. National Register of Large Dams -2019. Dam Safety Monitoring Directorate, New Delhi.
  • Eckhardt K. 2005. How to construct recursive digital filters for baseflow separation. Hydrol Process. 19:507–515. doi:10.1002/hyp.5675.
  • Eckhardt K. 2008. A comparison of baseflow indices, which were calculated with seven different baseflow separation methods. J Hydrol. 352:168–173. doi:10.1016/j.jhydrol.2008.01.005.
  • Fatchurohman H, Adji TN, Haryono E, Wijayanti P. 2018. Baseflow index assessment and master recession curve analysis for karst water management in Kakap Spring, Gunung Sewu. IOP Conf Ser Earth Environ Sci. 148:012029.
  • Gao H, Tang Q, Shi X, et al. 2010. Water budget record from Variable Infiltration Capacity (VIC) model. In Algorithm Theoretical Basis Document for Terrestrial Water Cycle Data Records. 120–173.
  • Griffiths GA, Clausen B. 1997. Streamflow recession in basins with multiple water storages. J Hydrol. 190:60–74. doi:10.1016/S0022-1694(96)03060-0.
  • Gurjar SK, Tare V. 2019. Spatial-temporal assessment of water quality and assimilative capacity of river Ramganga, a tributary of Ganga using multivariate analysis and QUEL2K. J Clean Prod v. 222:550–564. doi:10.1016/j.jclepro.2019.03.064.
  • Hall FR. 1968. Base-flow recessions—a review. Water Resour Res. 4:973–983. doi:10.1029/WR004i005p00973.
  • India-WRIS. 2014. Ganga Basin Report. CWC and ISRO.
  • Jain SK, Jain SK, Jain N, Xu C-Y. 2017. Hydrologic modeling of a Himalayan mountain basin by using the SWAT model. Hydrol Earth Syst Sci Discuss. 2017:1–26. doi:10.5194/hess-2017-100.
  • Joshi SK, Rai SP, Sinha R, et al. 2018. Tracing groundwater recharge sources in the northwestern Indian alluvial aquifer using water isotopes (δ18O, δ2H and 3H). J Hydrol. 559:835–847. doi:10.1016/j.jhydrol.2018.02.056.
  • Kalbus E, Reinstorf F, Schirmer M. 2006. Measuring methods for groundwater – surface water interactions: a review. Hydrol Earth Syst Sci. 10:873–887. doi:10.5194/hess-10-873-2006.
  • Kannan N, Jeong J, Srinivasan R. 2011. Hydrologic modeling of a canal-irrigated agricultural watershed with irrigation best management practices: case study. J Hydrol Eng. 16:746–757. doi:10.1061/(ASCE)HE.1943-5584.0000364.
  • Karim A, Veizer J. 2002. Water balance of the Indus river basin and moisture source in the Karakoram and western Himalayas: implications from hydrogen and oxygen isotopes in river water. J Geophys Res Atmospheres. 107:ACH 9-1. doi:10.1029/2000JD000253.
  • Kissel M, Schmalz B. 2020. Comparison of baseflow separation methods in the German low mountain range. Water. 12. doi:10.3390/w12061740.
  • Koskelo AI, Fisher TR, Utz RM, Jordan TE. 2012. A new precipitation-based method of baseflow separation and event identification for small watersheds (<50km2). J Hydrol. 450–451:267–278. doi:10.1016/j.jhydrol.2012.04.055.
  • Li J, Mao X, Li M. 2017. Modeling hydrological processes in oasis of Heihe river basin by landscape unit-based conceptual models integrated with FEFLOW and GIS. Spec Issue Improv Agric Water Product Ensure Food Secur Chang Environ Overseen Brent Cloth. 179:338–351. doi:10.1016/j.agwat.2016.09.007.
  • Li L, Maier HR, Partington D, et al. 2014. Performance assessment and improvement of recursive digital baseflow filters for catchments with different physical characteristics and hydrological inputs. Environ Model Softw. 54:39–52. doi:10.1016/j.envsoft.2013.12.011.
  • Lin K, Lian Y, He Y. 2014. Effect of baseflow separation on uncertainty of hydrological modeling in the xinanjiang model. Math Probl Eng. 2014:9.
  • Malki M, Bouchaou L, Hirich A, et al. 2017. Impact of agricultural practices on groundwater quality in intensive irrigated area of Chtouka-Massa, Morocco. Sci Total Environ. 574:760–770. doi:10.1016/j.scitotenv.2016.09.145.
  • McCabe DJ. 2010. Rivers and streams: life in flowing water. Nat Educ Knowl. 1(12):4.
  • Miller MP, Johnson HM, Susong DD, Wolock DM. 2015. A new approach for continuous estimation of baseflow using discrete water quality data: method description and comparison with baseflow estimates from two existing approaches. J Hydrol. 522:203–210. doi:10.1016/j.jhydrol.2014.12.039.
  • Miller MP, Susong DD, Shope CL, et al. 2014. Continuous estimation of baseflow in snowmelt-dominated streams and rivers in the Upper Colorado river basin: a chemical hydrograph separation approach. Water Resour Res. 50:6986–6999. doi:10.1002/2013WR014939.
  • Ministry of Water Resources (GoI). 2013. Hydro-Meteorological Data Dissemination Policy.
  • Modi A, Tare V, Chaudhuri C. 2020. Usage of long-term river discharge data in water balance model for assessment of trends in basin storages. Model Earth Syst Environ. doi:10.1007/s40808-020-00941-4.
  • Mukherjee A, Bhanja SN, Wada Y. 2018. Groundwater depletion causing reduction of baseflow triggering Ganges river summer drying. Sci Rep. 8:12049. doi:10.1038/s41598-018-30246-7.
  • Neff BP, Day SM, Piggott AR, Fuller LM. 2005. Base flow in the Great Lakes Basin. Reston, VA.
  • Nejadhashemi AP, Shirmohammadi A, Montas HJ. 2003. Evaluation of Streamflow Partitioning Methods. Paper presented at: ASAE Annual International Meeting 2003. Proceedings of the ASAE Annual International Meeting Sponsored by ASAE Riviera Hotel and Convention Center; July 27–30; Las Vegas, Nevada, USA.
  • Nishat B, Rahman SMM. 2009. Water resources modeling of the Ganges-Brahmaputra-Meghna river basins using satellite remote sensing Data1. JAWRA J Am Water Resour Assoc. 45:1313–1327. doi:10.1111/j.1752-1688.2009.00374.x.
  • Okello AMLS, Uhlenbrook S, Jewitt GPW, et al. 2018. Hydrograph separation using tracers and digital filters to quantify runoff components in a semi-arid mesoscale catchment. Hydrol Process. 32:1334–1350. doi:10.1002/hyp.11491.
  • Orth R, Staudinger M, Seneviratne SI, et al. 2015. Does model performance improve with complexity? A case study with three hydrological models. J Hydrol. 523:147–159. doi:10.1016/j.jhydrol.2015.01.044.
  • Park Y, Kim Y, Park S-K, et al. 2018. Water quality impacts of irrigation return flow on stream and groundwater in an intensive agricultural watershed. Sci Total Environ. 630:859–868. doi:10.1016/j.scitotenv.2018.02.113.
  • Pathak D, Whitehead PG, Futter MN, Sinha R. 2018. Water quality assessment and catchment-scale nutrient flux modeling in the Ramganga River Basin in north India: An application of INCA model. Sci Total Environ. 631–632:201–215. doi:10.1016/j.scitotenv.2018.03.022.
  • Pinder GF, Jones JF. 1969. Determination of the ground-water component of peak discharge from the chemistry of total runoff. Water Resour Res. 5:438–445. doi:10.1029/WR005i002p00438.
  • Rajput RK. 2007. Ground Water Brochure of District Bareilly, U.P. New Delhi: Central Ground Water Board (CGWB), Ministry of Jal Shakti, Department of Water Resources, River Development and Ganga Rejuvenation, Government of India. Available at: http://cgwb.gov.in/District_Profile/UP/Bareilly.pdf.
  • Ranjan V. 2012. District Ground Water Brochure of Shahjahanpur District, U.P. New Delhi: Central Ground Water Board (CGWB), Ministry of Water Resources, River Development and Ganga Rejuvenation, Government of India. Available at: http://cgwb.gov.in/District_Profile/UP/Shahjahanpur.pdf.
  • Rimmer A, Hartmann A. 2014. Optimal hydrograph separation filter to evaluate transport routines of hydrological models. J Hydrol. 514:249–257. doi:10.1016/j.jhydrol.2014.04.033.
  • Salerno F, Tartari G. 2009. A coupled approach of surface hydrological modelling and wavelet analysis for understanding the baseflow components of river discharge in karst environments. J Hydrol. 376:295–306. doi:10.1016/j.jhydrol.2009.07.042.
  • Santhi C, Allen PM, Muttiah RS, et al. 2008. Regional estimation of base flow for the conterminous United States by hydrologic landscape regions. J Hydrol. 351:139–153. doi:10.1016/j.jhydrol.2007.12.018.
  • Sapač K, Rusjan S, Šraj M. 2020. Assessment of consistency of low-flow indices of a hydrogeologically non-homogeneous catchment: A case study of the Ljubljanica river catchment, Slovenia. J Hydrol. 583:124621. doi:10.1016/j.jhydrol.2020.124621.
  • Saraswat S, Saumyata T, Rai JPN. 2007. Impact of brass and electroplating industry effluent on some physicochemical and biological properties of soil. J Sci Ind Res. 66:957–962.
  • Shao G, Zhang D, Guan Y, et al. 2020. Application of different separation methods to investigate the baseflow characteristics of a semi-arid sandy area, Northwestern China. Water. 12. doi:10.3390/w12020434.
  • Singh S, Srivastava P, Mitra S, Abebe A. 2016. Climate variability and irrigation impacts on streamflows in a Karst watershed—A systematic evaluation. J Hydrol Reg Stud. 8:274–286. doi:10.1016/j.ejrh.2016.07.001.
  • Smakhtin VU. 2001. Low flow hydrology: a review. J Hydrol. 240:147–186. doi:10.1016/S0022-1694(00)00340-1.
  • Sophocleous M. 2002. Interactions between groundwater and surface water: the state of the science. Hydrogeol J. 10:52–67. doi:10.1007/s10040-001-0170-8.
  • Steele TD. 1968. Digital-computer applications in chemical quality studies of surface water in a small watershed. Int Assoc Sci Hydrol. 80:203–214.
  • Stewart M, Cimino J, Ross M. 2007. Calibration of base flow separation methods with streamflow conductivity. Groundwater. 45:17–27. doi:10.1111/j.1745-6584.2006.00263.x.
  • Tallaksen LM. 1995. A review of baseflow recession analysis. J Hydrol. 165:349–370. doi:10.1016/0022-1694(94)02540-R.
  • Thomas BF, Vogel RM, Kroll CN, Famiglietti JS. 2013. Estimation of the base flow recession constant under human interference. Water Resour Res. 49:7366–7379. doi:10.1002/wrcr.20532.
  • Tsakiris G, Nalbantis I, Cavadias G. 2011. Regionalization of low flows based on canonical correlation analysis. Adv Water Resour. 34:865–872. doi:10.1016/j.advwatres.2011.04.007.
  • Tyagi D, Malik DS. 2018. Assessment of physico-chemical parameters and water quality index of ram-Ganga reservoir at Kalagarh (Uttarakhand). Int J Current Res Life Sci. 7:1234–1239.
  • Verma RC. 2008. District Brochure of Moradabad District, U.P. New Delhi: Central Ground Water Board (CGWB), Ministry of Water Resources, River Development and Ganga Rejuvenation, Government of India. Available at: http://cgwb.gov.in/District_Profile/UP/Moradabad.pdf.
  • Wen F, Chen X. 2006. Evaluation of the impact of groundwater irrigation on streamflow in Nebraska. J Hydrol. 327:603–617. doi:10.1016/j.jhydrol.2005.12.016.
  • WMO. 2008. Manual on Low-Flow Estimation and Prediction. Geneva, Switzerland: World Meteorological Organization.
  • Yihdego Y, Becht R. 2013. Simulation of lake–aquifer interaction at Lake Naivasha, Kenya using a three-dimensional flow model with the high conductivity technique and a DEM with bathymetry. J Hydrol. 503:111–122. doi:10.1016/j.jhydrol.2013.08.034.
  • Yihdego Y, Webb JA. 2015. Use of a conceptual hydrogeological model and a time variant water budget analysis to determine controls on salinity in Lake Burrumbeet in southeast Australia. Environ Earth Sci. 73:1587–1600. doi:10.1007/s12665-014-3509-x.
  • Yihdego Y, Webb JA, Vaheddoost B. 2017. Highlighting the role of groundwater in lake– aquifer interaction to reduce vulnerability and enhance resilience to climate change. Hydrology. 4. doi:10.3390/hydrology4010010.
  • Zhang J, Zhang Y, Song J, et al. 2020. Large-scale baseflow index prediction using hydrological modelling, linear and multilevel regression approaches. J Hydrol. 585:124780. doi:10.1016/j.jhydrol.2020.124780.
  • Zhang J, Zhang Y, Song J, Cheng L. 2017. Evaluating relative merits of four baseflow separation methods in Eastern Australia. J Hydrol. 549:252–263. doi:10.1016/j.jhydrol.2017.04.004.
  • Zhang L, Brutsaert W, Crosbie R, Potter N. 2014. Long-term annual groundwater storage trends in Australian catchments. Adv Water Resour. 74:156–165. doi:10.1016/j.advwatres.2014.09.001.
  • Zhang R, Li Q, Chow TL, et al. 2013. Baseflow separation in a small watershed in New Brunswick, Canada, using a recursive digital filter calibrated with the conductivity mass balance method. Hydrol Process. 27:2659–2665. doi:10.1002/hyp.9417.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.