475
Views
13
CrossRef citations to date
0
Altmetric
ARTICLES

Wall-following behaviour during evacuation under limited visibility: experiment and modelling

ORCID Icon, , , , ORCID Icon &
Pages 626-653 | Received 07 Nov 2018, Accepted 26 Sep 2019, Published online: 10 Feb 2020

References

  • Cao, S., L. Fu, P. Wang, G. Zeng, and W. Song. 2018. “Experimental and Modeling Study on Evacuation Under Good and Limited Visibility in a Supermarket.” Fire Safety Journal 102: 27–36. doi: 10.1016/j.firesaf.2018.10.003
  • Cao, S., W. Song, W. Lv, and Z. Fang. 2015. “A Multi-Grid Model for Pedestrian Evacuation in a Room Without Visibility.” Physica A: Statistical Mechanics and Its Applications 436: 45–61. doi: 10.1016/j.physa.2015.05.019
  • Chen, J., J. Wang, B. Wang, R. Liu, and Q. Wang. 2018. “An Experimental Study of Visibility Effect on Evacuation Speed on Stairs.” Fire Safety Journal 96: 189–202. doi: 10.1016/j.firesaf.2017.11.010
  • Chu, J., A. Chen, and Y. Lin. 2017. “Variable Guidance for Pedestrian Evacuation Considering Congestion, Hazard, and Compliance Behaviour.” Transportation Research Part C: Emerging Technologies 85: 664–683. doi: 10.1016/j.trc.2017.10.009
  • Cowan, N. J., J. Lee, and R. J. Full. 2006. “Task-Level Control of Rapid Wall Following in the American Cockroach.” Journal of Experimental Biology 209 (15): 3043. doi: 10.1242/jeb.02433
  • Dussutour, A., J. L. Deneubourg, and V. Fourcassie. 2005. “Amplification of Individual Preferences in a Social Context: the Case of Wall-Following in Ants.” Proceedings of the Royal Society B: Biological Sciences 272 (1564): 705–714. doi: 10.1098/rspb.2004.2990
  • Fridolf, K., E. Ronchi, D. Nilsson, and H. Frantzich. 2013. “Movement Speed and Exit Choice in Smoke-Filled Rail Tunnels.” Fire Safety Journal 59: 8–21. doi: 10.1016/j.firesaf.2013.03.007
  • Guo, R. 2018. “Potential-Based Dynamic Pedestrian Flow Assignment.” Transportation Research Part C: Emerging Technologies 91: 263–275. doi: 10.1016/j.trc.2018.04.011
  • Guo, N., Q. Hao, R. Jiang, M. Hu, and B. Jia. 2016. “Uni- and Bi-Directional Pedestrian Flow in the View-Limited Condition: Experiments and Modeling.” Transportation Research Part C: Emerging Technologies 71: 63–85. doi: 10.1016/j.trc.2016.07.001
  • Guo, R., H. Huang, and S. C. Wong. 2012. “Route Choice in Pedestrian Evacuation Under Conditions of Good and Zero Visibility: Experimental and Simulation Results.” Transportation Research Part B: Methodological 46 (6): 669–686. doi: 10.1016/j.trb.2012.01.002
  • Helbing, D., L. Buzna, and A. Johansson. 2005. “Self-Organized Pedestrian Crowd Dynamics: Experiments, Simulations, and Design Solutions.” Transportation Science 39 (1): 1–24. doi: 10.1287/trsc.1040.0108
  • Helbing, D., I. Farkas, and T. Vicsek. 2000. “Simulating Dynamical Features of Escape Panic.” Nature 407 (6803): 487–490. doi: 10.1038/35035023
  • Helbing, D., and P. Molnar. 1995. “Social Force Model for Pedestrian Dynamics.” Physical Review E 51 (5): 4282–4286. doi: 10.1103/PhysRevE.51.4282
  • Hirai, K., and K. Tarui. 1977. A Simulation of the Behaviour of a Crowd in Panic Systems and Control.
  • Hussein, M., and T. Sayed. 2017. “A Bi-Directional Agent-Based Pedestrian Microscopic Model.” Transportmetrica A: Transport Science 13 (4): 326–355. doi: 10.1080/23249935.2016.1266531
  • Isobe, M., D. Helbing, and T. Nagatani. 2004. “Experiment, Theory, and Simulation of the Evacuation of a Room Without Visibility.” Physical Review E 69 (6 Pt 2): 66132. doi: 10.1103/PhysRevE.69.066132
  • Jeon, G., J. Kim, W. Hong, and G. Augenbroe. 2011. “Evacuation Performance of Individuals in Different Visibility Conditions.” Building and Environment 46 (5): 1094–1103. doi: 10.1016/j.buildenv.2010.11.010
  • Jin, T., and T. Yamada. 1985. “Irritating Effects of Fire Smoke on Visibility.” Fire Science and Technology 5 (1): 79–90. doi: 10.3210/fst.5.79
  • Kirchner, A., and A. Schadschneider. 2002. “Simulation of Evacuation Processes Using a Bionics-Inspired Cellular Automaton Model for Pedestrian Dynamics.” Physica A: Statistical Mechanics and Its Applications 312: 260–276. doi: 10.1016/S0378-4371(02)00857-9
  • Kobes, M., I. Helsloot, B. de Vries, J. G. Post, N. Oberijé, and K. Groenewegen. 2010. “Way Finding During Fire Evacuation: An Analysis of Unannounced Fire Drills in a Hotel at Night.” Building and Environment 45 (3): 537–548. doi: 10.1016/j.buildenv.2009.07.004
  • Li, M., Y. Zhao, L. He, W. Chen, and X. Xu. 2015. “The Parameter Calibration and Optimization of Social Force Model for the Real-Life 2013 Ya’an Earthquake Evacuation in China.” Safety Science 79: 243–253. doi: 10.1016/j.ssci.2015.06.018
  • Liu, R., Z. Fu, A. Schadschneider, Q. Wen, J. Chen, and S. Liu. 2019. “Modeling the Effect of Visibility on Upstairs Crowd Evacuation by a Stochastic FFCA Model with Finer Discretization.” Physica A: Statistical Mechanics and its Applications 531: 121723. doi: 10.1016/j.physa.2019.121723
  • Moussaid, M., D. Helbing, and G. Theraulaz. 2011. “How Simple Rules Determine Pedestrian Behaviour and Crowd Disasters.” Proceedings of the National Academy of Sciences 108 (17): 6884–6888. doi: 10.1073/pnas.1016507108
  • Nagai, R., T. Nagatani, M. Isobe, and T. Adachi. 2004. “Effect of Exit Configuration on Evacuation of a Room Without Visibility.” Physica A: Statistical Mechanics and its Applications 343: 712–724. doi: 10.1016/j.physa.2004.06.061
  • Nagatani, T., and R. Nagai. 2004. “Statistical Characteristics of Evacuation Without Visibility in Random Walk Model.” Physica A: Statistical Mechanics and its Applications 341: 638–648. doi: 10.1016/j.physa.2004.04.124
  • Okazaki, S. 1979. “A Study of Pedestrian Movement in Architectural Space, Part 1: Pedestrian Movement by the Application on of Magnetic Models.” Trans. AIJ 1979 (283): 111–119.
  • Parisi, D. R., and C. O. Dorso. 2005. “Microscopic Dynamics of Pedestrian Evacuation.” Physica A: Statistical Mechanics and Its Applications 354 (1): 606–618. doi: 10.1016/j.physa.2005.02.040
  • Porter, E., S. H. Hamdar, and W. Daamen. 2018. “Pedestrian Dynamics at Transit Stations: An Integrated Pedestrian Flow Modeling Approach.” Transportmetrica A: Transport Science 14 (5-6): 468–483. doi: 10.1080/23249935.2017.1378280
  • Shen, Y., Q. S. Wang, W. G. Yan, J. H. Sun, and K. Zhu. 2014. “Evacuation Processes of Different Genders in Different Visibility Conditions–an Experimental Study.” Procedia Engineering 71: 65–74. doi: 10.1016/j.proeng.2014.04.009
  • Shi, X., Z. Ye, N. Shiwakoti, and O. Grembek. 2018. “A State-of-the-Art Review on Empirical Data Collection for External Governed Pedestrians Complex Movement.” Journal of Advanced Transportation 2018: 1–42.
  • Shi, X., Z. Ye, N. Shiwakoti, D. Tang, and J. Lin. 2019. “Examining Effect of Architectural Adjustment on Pedestrian Crowd Flow at Bottleneck.” Physica A: Statistical Mechanics and Its Applications 522: 350–364. doi: 10.1016/j.physa.2019.01.086
  • Shiwakoti, N., Y. Gong, X. Shi, and Z. Ye. 2015. “Examining Influence of Merging Architectural Features on Pedestrian Crowd Movement.” Safety Science 75: 15–22. doi: 10.1016/j.ssci.2015.01.009
  • Shiwakoti, N., X. Shi, and Z. Ye. 2019. “A Review on the Performance of an Obstacle Near an Exit on Pedestrian Crowd Evacuation.” Safety Science 113: 54–67. doi: 10.1016/j.ssci.2018.11.016
  • Tak, S., S. Kim, and H. Yeo. 2018. “Agent-Based Pedestrian Cell Transmission Model for Evacuation.” Transportmetrica A: Transport Science 14 (5-6): 484–502. doi: 10.1080/23249935.2017.1280559
  • Tavana, H., and K. Aghabayk. 2019. “Insights Toward Efficient Angle Design of Pedestrian Crowd Egress Point Bottlenecks.” Transportmetrica A: Transport Science 15 (2): 1569–1586. doi: 10.1080/23249935.2019.1619200
  • Wolf, P. R., and B. A. Dewitt. 2000. Elements of Photogrammetry with Applications in GIS. 3rd ed. New York: McGraw Hill.
  • Xue, S., B. Jia, R. Jiang, and J. Shan. 2016. “Pedestrian Evacuation in View and Hearing Limited Condition: The Impact of Communication and Memory.” Physics Letters A 380 (38): 3029–3035. doi: 10.1016/j.physleta.2016.07.030
  • Zeng, Y., W. Song, F. Huo, Z. Fang, S. Cao, and G. Vizzari. 2018. “Effects of Initial Distribution Ratio and Illumination on Merging Behaviours During High-Rise Stair Descent Process.” Fire Technology 54 (5): 1095–1112. doi: 10.1007/s10694-018-0721-3

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.