375
Views
12
CrossRef citations to date
0
Altmetric
ARTICLES

Potential field cellular automata model for overcrowded pedestrian flow

, , , ORCID Icon, ORCID Icon &
Pages 749-775 | Received 27 Jan 2019, Accepted 29 Oct 2019, Published online: 12 Feb 2020

References

  • Burstedde, C., K. Klauck, A. Schadschneider, and J. Zittartz. 2001. “Simulation of Pedestrian Dynamics Using a Two-Dimensional Cellular Automaton.” Physica A: Statistical Mechanics and Its Applications 295 (3–4): 507–525.
  • Chen, M., D. Han, and H. Zhang. 2011. “Research on a Multi-Grid Model for Passenger Evacuation in Ships.” Journal of Marine Science and Application 10 (3): 340–346.
  • Fang, Z. M., W. G. Song, J. Zhang, and H. Wu. 2012. “A Multi-Grid Model for Evacuation Coupling with the Effects of Fire Products.” Fire Technology 48 (1): 91–104.
  • Guo, R. Y., H. J. Huang, and S. C. Wong. 2013. “A Potential Field Approach to the Modeling of Route Choice in Pedestrian Evacuation.” Journal of Statistical Mechanics: Theory and Experiment 2013 (2): P02010.
  • Hartmann, D. 2010. “Adaptive Pedestrian Dynamics Based on Geodesics.” New Journal of Physics 12 (4): 043032.
  • Helbing, D. 2001. “Traffic and Related Self-Driven Many-Particle Systems.” Reviews of Modern Physics 73 (4): 1067–1141.
  • Helbing, D., A. Johansson, and H. Z. Al-Abideen. 2007. “Dynamics of Crowd Disasters: An Empirical Study.” Physical Review E 75 (4): 046109.
  • Helbing, D., and P. Molnár. 1995. “Social Force Model for Pedestrian Dynamics.” Physical Review E 51 (5): 4282–4286.
  • Helbing, D., and P. Mukerji. 2012. “Crowd Disasters as Systemic Failures: Analysis of the Love Parade Disaster.” EPJ Data Science 1 (1): 7.
  • Helbing, D., P. Molnár, I. J. Farkas, and K. Bolay. 2001. “Self-Organizing Pedestrian Movement.” Environment and Planning B: Planning and Design 28 (3): 361–383.
  • Hoogendoorn, S. P., and P. H. L. Bovy. 2004. “Pedestrian Route-choice and Activity Scheduling Theory and Models.” Transportation Research Part B: Methodological 38 (2): 169–190.
  • Huang, H. J., and R. Y. Guo. 2008. “Static Floor Field and Exit Choice for Pedestrian Evacuation in Rooms with Internal Obstacles and Multiple Exits.” Physical Review E 78 (2): 021131.
  • Huang, H. J., and W. H. K. Lam. 2002. “Modeling and Solving the Dynamic User Equilibrium Route and Departure Time Choice Problem in Network with Queues.” Transportation Research Part B: Methodological 36 (3): 253–273.
  • Huang, L., S. C. Wong, M. Zhang, C. W. Shu, and W. H. K. Lam. 2009. “Revisiting Hughes Dynamic Continuum Model for Pedestrian Flow and the Development of an Efficient Solution Algorithm.” Transportation Research Part B: Methodological 43 (1): 127–141.
  • Hughes, R. L. 2002. “A Continuum Theory for the Flow of Pedestrians.” Transportation Research Part B: Methodological 36 (6): 507–535.
  • Hussein, M., and T. Sayed. 2017. “A Bi-Directional Agent-Based Pedestrian Microscopic Model.” Transportmetrica A: Transport Science 13 (4): 326–355.
  • Ibrahim, A. M., I. Venkat, and P. De Wilde. 2019. “The Impact of Potential Crowd Behaviours on Emergency Evacuation: An Evolutionary Game Theoretic Approach.” Journal of Artificial Societies and Social Simulation 22 (1): 3.
  • Jian, X. X., S. C. Wong, P. Zhang, K. Choi, H. Li, and X. Zhang. 2014. “Perceived Cost Potential Field Cellular Automata Model with an Aggregated Force Field for Pedestrian Dynamics.” Transportation Research Part C: Emerging Technologies 42: 200–210.
  • Jiang, Y. Q., P. Zhang, S. C. Wong, and R. X. Liu. 2010. “A Higher-Order Macroscopic Model for Pedestrian Flows.” Physica A: Statistical Mechanics and Its Applications 389 (21): 4623–4635.
  • Kielar, P. M., D. H. Biedermann, A. Kneidl, and A. Borrmann. 2018. “A Unified Pedestrian Routing Model for Graph-Based Wayfinding Built on Cognitive Principles.” Transportmetrica A: Transport Science 14 (5–6): 406–432.
  • Kirchner, A., H. Klüpfel, K. Nishinari, A. Schadschneider, and M. Schreckenberg. 2004. “Discretization Effects and the Influence of Walking Speed in Cellular Automata Models for Pedestrian Dynamics.” Journal of Statistical Mechanics: Theory and Experiment 2004 (10): P10011.
  • Kirchner, A., K. Nishinari, and A. Schadschneider. 2003. “Friction Effects and Clogging in a Cellular Automaton Model for Pedestrian Dynamics.” Physical Review E 67 (5): 056122.
  • Kirchner, A., and A. Schadschneider. 2002. “Simulation of Evacuation Processes Using a Bionics-Inspired Cellular Automaton Model for Pedestrian Dynamics.” Physica A: Statistical Mechanics and Its Applications 312 (1–2): 260–276.
  • Kirik, E., T. Y. Yurgel'yan, and D. Krouglov. 2009. “The Shortest Time and/or the Shortest Path Strategies in a CA FF Pedestrian Dynamics Model.” Journal of Siberian Federal University. Mathematics and Physics 2 (3): 271–278.
  • Kretz, T. 2009. “Pedestrian Traffic: On the Quickest Path.” Journal of Statistical Mechanics: Theory and Experiment 2009 (03): P03012.
  • Kretz, T. 2010. “The Dynamic Distance Potential Field in a Situation with Asymmetric Bottleneck Capacities.” In International Conference on Cellular Automata, 480–488. Berlin: Springer.
  • Kretz, T., A. Grünebohm, and M. Schreckenberg. 2006. “Experimental Study of Pedestrian Flow Through a Bottleneck.” Journal of Statistical Mechanics: Theory and Experiment 2006 (10): P10014.
  • Kuang, H., T. Chen, X. L. Li, and S. M. Lo. 2014. “A New Lattice Hydrodynamic Model for Bidirectional Pedestrian Flow Considering the Visual Field Effect.” Nonlinear Dynamics 78 (3): 1709–1716.
  • Kuang, H., X. Li, T. Song, and S. Dai. 2008. “Analysis of Pedestrian Dynamics in Counter Flow Via an Extended Lattice Gas Model.” Physical Review E 78 (6): 066117.
  • Li, X., and L. Dong. 2012. “Modeling and Simulation of Pedestrian Counter Flow on a Crosswalk.” Chinese Physics Letters 29 (9): 098902.
  • Lo, H. K., and A. Chen. 2000. “Traffic Equilibrium Problem with Route-specific Costs: Formulation and Algorithms.” Transportation Research Part B: Methodological 34 (6): 493–513.
  • Müller, K. 1981. “Zur Gestaltung und Bemessung von Fluchtwegen fr die Evakuierung von Personen aus Bauwerken auf der Grundlage von Modellversuchen.” PhD diss., Verlag nicht ermittelbar.
  • Nishinari, K., A. Kirchner, A. Namazi, and A. Schadschneider. 2004. “Extended Floor Field CA Model for Evacuation Dynamics.” IEICE Transactions on Information and Systems 87 (3): 726–732.
  • Nowak, S., and A. Schadschneide. 2012. “Quantitative Analysis of Pedestrian Counterflow in a Cellular Automaton Model.” Physical Review E 85: 066128.
  • Porter, E., S. H. Hamdar, and W. Daamen. 2018. “Pedestrian Dynamics at Transit Stations: An Integrated Pedestrian Flow Modeling Approach.” Transportmetrica A: Transport Science 14 (5–6): 468–483.
  • Sethian, J. A. 1999. “Fast Marching Methods.” SIAM Review 41 (2): 199–235.
  • Seyfried, A., O. Passon, B. Steffen, M. Boltes, T. Rupprecht, and W. Klingsch. 2009. “New Insights into Pedestrian Flow Through Bottlenecks.” Transportation Science 43 (3): 395–406.
  • Song, W., X. Xu, B. H. Wang, and S. Ni. 2006. “Simulation of Evacuation Processes Using a Multi-Grid Model for Pedestrian Dynamics.” Physica A: Statistical Mechanics and Its Applications 363 (2): 492–500.
  • Szeto, W. Y., and S. C. Wong. 2012. “Dynamic Traffic Assignment: Model Classifications and Recent Advances in Travel Choice Principles.” Central European Journal of Engineering 2 (1): 1–18.
  • Varas, A., M. D. Cornejo, D. Mainemer, B. Toledo, J. Rogan, V. Munoz, and J. A. Valdivia. 2007. “Cellular Automaton Model for Evacuation Process with Obstacles.” Physica A: Statistical Mechanics and Its Applications 382 (2): 631–642.
  • Weng, W. G., L. L. Pan, S. F. Shen, and H. Y. Yuan. 2007. “Small-Grid Analysis of Discrete Model for Evacuation From a Hall.” Physica A: Statistical Mechanics and Its Applications 374 (2): 821–826.
  • Wong, S. C., W. L. Leung, S. H. Chan, W. H. K. Lam, N. H. Yung, C. Y. Liu, and P. Zhang. 2010. “Bidirectional Pedestrian Stream Model with Oblique Intersecting Angle.” Journal of Transportation Engineering 136 (3): 234–242.
  • Xia, Y., S. C. Wong, and C. W. Shu. 2009. “Dynamic Continuum Pedestrian Flow Model with Memory Effect.” Physical Review E 79 (6): 066113.
  • Xie, D. F., Z. Y. Gao, X. M. Zhao, and D. Z. W. Wang. 2012. “Agitated Behavior and Elastic Characteristics of Pedestrians in an Alternative Floor Field Model for Pedestrian Dynamics.” Physica A: Statistical Mechanics and Its Applications 391 (7): 2390–2400.
  • Xie, S., and S. C. Wong. 2015. “A Bayesian Inference Approach to the Development of a Multidirectional Pedestrian Stream Model.” Transportmetrica A: Transport Science 11 (1): 61–73.
  • Xiong, T., P. Zhang, S. C. Wong, C. W. Shu, and M. Zhang. 2011. “A Macroscopic Approach to the Lane Formation Phenomenon in Pedestrian Counter Flow.” Chinese Physics Letters 28 (10): 108901.
  • Zhang, P., X. X. Jian, S. C. Wong, and K. Choi. 2012. “Potential Field Cellular Automata Model for Pedestrian Flow.” Physical Review E 85 (2): 021119.
  • Zhang, J., W. Song, and X. Xu. 2008. “Experiment and Multi-Grid Modeling of Evacuation from a Classroom.” Physica A: Statistical Mechanics and Its Applications 387 (23): 5901–5909.
  • Zhao, H. 2005. “A Fast Sweeping Method for Eikonal Equations.” Mathematics of Computation 74 (250): 603–628.
  • Zhou, Z., Y. Zhou, Z. Pu, and Y. Xu. 2019. “Simulation of Pedestrian Behavior During the Flashing Green Signal Using a Modified Social Force Model.” Transportmetrica A: Transport Science 15 (2): 1019–1040.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.