326
Views
14
CrossRef citations to date
0
Altmetric
Original Articles

Neural correlates of learning in an electrocorticographic motor-imagery brain-computer interface

, , , &
Pages 147-157 | Received 09 Aug 2014, Accepted 10 Aug 2014, Published online: 15 Sep 2014

References

  • Rao RPN. Brain-computer interfacing: an introduction. Cambridge: Cambridge University Press; 2013.
  • Yoo S-S, Fairneny T, Chen N-K, Choo S-E, Panych LP, Park H, et al. Brain-computer interface using fMRI: spatial navigation by thoughts. Neuroreport. 2004;15:1591–1595.
  • Weiskopf N, Mathiak K, Bock SW, Scharnowski F, Veit R, Grodd W, et al. Principles of a brain-computer interface (BCI) based on real-time functional magnetic resonance imaging (fMRI). IEEE Trans Biomed Eng. 2004;51:966–970.
  • Mellinger J, Schalk G, Braun C, Preissl H, Rosenstiel W, Birbaumer N, et al. An MEG-based brain-computer interface (BCI). Neuroimage. 2007;36:581–593.
  • Schwartz AB, Cui XT, Weber DJ, Moran DW. Brain-controlled interfaces: movement restoration with neural prosthetics. Neuron. 2006;52:205–220.
  • Taylor DM, Tillery SIH, Schwartz AB. Direct cortical control of 3D neuroprosthetic devices. Science. 2002;296(5574):1829–1832.
  • Kennedy PR, Bakay RAE, Moore MM, Adams K, Goldwaithe J. Direct control of a computer from the human central nervous system. IEEE Trans Rehabil Eng. 2000;8:198–202.
  • Isaacs RE, Weber DJ, Schwartz AB. Work toward real-time control of a cortical neural prothesis. IEEE Trans Rehabil Eng. 2000;8:196–198.
  • Pfurtscheller G. “Thought”-control of functional electrical stimulation to restore hand grasp in a patient with tetraplegia. Neurosci Lett. 2003;351:33–36.
  • Hochberg LR, Serruya MD, Friehs GM, Mukand JA, Saleh M, Caplan AH, et al. Neuronal ensemble control of prosthetic devices by a human with tetraplegia. Nature. 2006;442(7099):164–171.
  • Fabiani GE, McFarland DJ, Wolpaw JR, Pfurtscheller G. Conversion of EEG activity into cursor movement by a brain-computer interface (BCI). IEEE Trans Neural Syst Rehabil Eng. 2004;12:331–338.
  • Wolpaw JR, McFarland DJ, Vaughan TM, Schalk G. The Wadsworth Center brain-computer interface (BCI) research and development program. IEEE Trans Neural Syst Rehabil Eng. 2003;11:204–207.
  • Wolpaw J. Brain–computer interfaces for communication and control. Clin Neurophysiol. 2002;113:767–791.
  • Brunner P, Ritaccio AL, Emrich JF, Bischof H, Schalk G. Rapid communication with a “P300” matrix speller using electrocorticographic signals (ECoG). Front Neurosci. 2011;5:5.
  • Miller KJ, Blakely T, Schalk G, den Nijs M, Rao RPN, Ojemann JG. Three cases of feature correlation in an electrocorticographic BCI. Conf Proc Annu Int Conf IEEE Eng Med Biol Soc. 2008;2008:5318–5321.
  • Leuthardt EC, Miller KJ, Schalk G, Rao RPN, Ojemann JG. Electrocorticography-based brain computer interface–the Seattle experience. IEEE Trans Neural Syst Rehabil Eng. 2006;14:194–198.
  • Pei X, Barbour DL, Leuthardt EC, Schalk G. Decoding vowels and consonants in spoken and imagined words using electrocorticographic signals in humans. J Neural Eng. 2011;8:046028.
  • Leuthardt EC, Schalk G, Wolpaw JR, Ojemann JG, Moran DW. A brain-computer interface using electrocorticographic signals in humans. J Neural Eng. 2004;1:63–71.
  • Schalk G, Miller KJ, Anderson NR, Wilson JA, Smyth MD, Ojemann JG, et al. Two-dimensional movement control using electrocorticographic signals in humans. J Neural Eng. 2008;5:75–84.
  • Wolpaw JR, Birbaumer N, Heetderks WJ, McFarland DJ, Peckham PH, Schalk G, et al. Brain-computer interface technology: a review of the first international meeting. IEEE Trans Rehabil Eng. 2000;8:164–173.
  • Donchin E, Spencer KM, Wijesinghe R. The mental prosthesis: assessing the speed of a P300-based brain-computer interface. IEEE Trans Rehabil Eng. 2000;8:174–179.
  • Blakely T, Miller KJ, Zanos SP, Rao RPN, Ojemann JG. Robust, long-term control of an electrocorticographic brain-computer interface with fixed parameters. Neurosurg Focus. 2009;27:E13.
  • Miller KJ, Schalk G, Fetz EE, den Nijs M, Ojemann JG, Rao RPN. Cortical activity during motor execution, motor imagery, and imagery-based online feedback. Proc Natl Acad Sci USA. 2010;107:4430–4435.
  • Wander J, Blakely T, Miller KJ, Weaver K, Johnson L, Olson J, et al. Distributed cortical adaptation during learning of a brain–computer interface task. Proc Natl Acad Sci USA. 2013;110:10818–10823.
  • Miller KJ, Sorensen LB, Ojemann JG, den Nijs M. Power-law scaling in the brain surface electric potential. PLoS Comput Biol. 2009;5:e1000609.
  • Leuthardt EC, Gaona C, Sharma M, Szrama N, Roland J, Freudenberg Z, et al. Using the electrocorticographic speech network to control a brain-computer interface in humans. J Neural Eng. 2011;8:036004.
  • McFarland DJ, Wolpaw JR. EEG-based communication and control: speed–accuracy relationships. Appl Psychophysiol Biofeedback. 2003;28:217–231.
  • Dale AM, Fischl B, Sereno MI. Cortical surface-based analysis. I. Segmentation and surface reconstruction. Neuroimage. 1999;9:179–194.
  • Papademetris X, Jackowski MP, Rajeevan N, Constable T, Staib LH. BioImage suite: an integrated medical image analysis suite. Image Process. http://hdl.handle.net/1926/37.
  • Hermes D, Miller KJ, Noordmans HJ, Vansteensel MJ, Ramsey NF. Automated electrocorticographic electrode localization on individually rendered brain surfaces. J Neurosci Methods. 2010;185:293–298.
  • Schalk G, McFarland DJ, Hinterberger T, Birbaumer N, Wolpaw JR. BCI2000: a general-purpose brain-computer interface (BCI) system. IEEE Trans Biomed Eng. 2004;51:1034–1043.
  • McFarland DJ, Lefkowicz AT, Wolpaw JR. Design and operation of an EEG-based brain-computer interface with digital signal processing technology. Behav Res Methods Instrum Comput. 1997;29:337–345.
  • Fitts PM, Posner MI. Human performance. Pacific Grove, CA: Brooks/Cole; 1967.
  • Gobel EW, Parrish TB, Reber PJ. Neural correlates of skill acquisition: decreased cortical activity during a serial interception sequence learning task. Neuroimage. 2011;58:1150–1157.
  • Grafton S, Hazeltine E, Ivry R. Functional mapping of sequence learning in normal humans. J Cogn Neurosci. 1995;7:497–510.
  • Karni A, Meyer G, Rey-Hipolito C, Jezzard P, Adams MM, Turner R, et al. The acquisition of skilled motor performance: fast and slow experience-driven changes in primary motor cortex. Proc Natl Acad Sci USA. 1998;95:861–868.
  • Zacksenhouse M, Lebedev M, Carmena JM, O’Doherty JE, Henriquez C, Nicolelis M. Cortical modulations increase in early sessions with brain-machine interface. PLoS One. 2007;2.
  • Wander JD, Rao RPN. Brain Computer Interfaces: a powerful tool for scientific inquiry. Curr Opin Neurobiol. 2014;25:70–75.
  • Acharya S, Aggarwal V, Tenore F, Shin H-C, Etienne-Cummings R, Schieber MH, et al. Towards a brain-computer interface for dexterous control of a multi-fingered prosthetic hand. 3rd Int. IEEE/EMBS Conf Neural Eng IEEE; 2007:200–203.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.