290
Views
20
CrossRef citations to date
0
Altmetric
Articles

Differential roles of high gamma and local motor potentials for movement preparation and execution

, , , , , & show all
Pages 88-102 | Received 26 Apr 2015, Accepted 13 Apr 2016, Published online: 04 May 2016

References

  • Wolpaw J, Wolpaw E, Brain-Computer Interfaces, 1st ed. New York, NY: Oxford University Press; 2012.10.1145/2110363
  • Broetz D, Braun C, Weber C, et al. Combination of brain-computer interface training and goal-directed physical therapy in chronic stroke: a case report. Neurorehabil Neural Repair. Sep. 2010; 24: 674–679.10.1177/1545968310368683
  • Ang KK, Guan C, Chua KSG, et al. A clinical study of motor imagery BCI performance in stroke by including calibration data from passive movement, in Nature. IEEE; 2013, 6603–6606.
  • Hochberg LR, Serruya MD, Friehs GM, et al. Neuronal ensemble control of prosthetic devices by a human with tetraplegia. Nature. Jul 2006; 442: 164–171.10.1038/nature04970
  • Collinger JL, B Wodlinger, JE Downey, et al. High-performance neuroprosthetic control by an individual with tetraplegia. Lancet. Feb. 2013; 381: 557–564
  • Rebsamen B, Guan C, Zhang H, et al. A brain controlled wheelchair to navigate in familiar environments. IEEE Trans. Neural Syst. Rehabil. Eng. Dec. 2010; 18: 590–598.10.1109/TNSRE.2010.2049862
  • Carlson T, Demiris Y. Collaborative Control for a Robotic Wheelchair: Evaluation of Performance, Attention, and Workload. IEEE trans syst man cybern part B (cybern). Jun. 2012; 42: 876–888.10.1109/TSMCB.2011.2181833
  • Carlson T, J Del R Milla ́n, Brain-Controlled Wheelchairs: A Robotic Architecture, IEEE Rob. Autom. Mag. 2013; 20: 65–73.
  • Kaufmann T, Herweg A, Kubler A. Toward brain-computer interface based wheelchair control utilizing tactually-evoked event-related potentials. J. NeuroEng.Rehabil. 2014; 11: 7.10.1186/1743-0003-11-7
  • Ball T, A Schulze-Bonhage, A Aertsen, et al. Differential representation of arm movement direction in relation to cortical anatomy and function. J. Neural Eng. Feb 2009; 6: 01600610.1088/1741-2560/6/1/016006
  • Schalk G, Leuthardt EC. Brain-Computer Interfaces Using Electrocorticographic Signals. IEEE Rev. Biomed. Eng. 2011; 4: 140–154.10.1109/RBME.2011.2172408
  • Chao, Long-term asynchronous decoding of arm motion using electrocorticographic signals in monkey. Front. Neuro. Eng. Jan 2010: 1–10.
  • Schalk G. Can electrocorticography (ECoG) support robust and powerful brain-computer interfaces? Front. Neuro. eng. 2010; 3: 9–9.
  • Wang W, Collinger JL, Degenhart AD, Tyler-Kabara EC, Schwartz AB, Moran DW, Weber DJ, Wodlinger B, Vinjamuri RK, Ashmore RC, Kelly JW, Boninger ML. An electrocorticographic brain interface in an individual with tetraplegia. PLoS One, 2013; 8(2): e55344.
  • Miller KJ, Honey CJ, Hermes D, et al. Broadband changes in the cortical surface potential track activation of functionally diverse neuronal populations. NeuroImage. Jan. 2014; 85: 711–720.10.1016/j.neuroimage.2013.08.070
  • Miller KJ, Leuthardt EC, Schalk G, et al. Spectral changes in cortical surface potentials during motor movement. J.Neurosci. Feb 2007; 27: 2424–2432.10.1523/JNEUROSCI.3886-06.2007
  • Leuthardt EC, Schalk G, Wolpaw JR, et al. A brain-computer interface using electrocorticographic signals in humans. J. Neural Eng. Jun 2004; 1: 63–7110.1088/1741-2560/1/2/001
  • Schalk G, Miller KJ, Anderson NR, et al. Two- dimensional movement control using electrocorticographic signals in humans. J. Neural Eng. Feb 2008; 5: 75–84.10.1088/1741-2560/5/1/008
  • Mehring C, Nawrot M, de Oliveira S, et al. Comparing information about arm movement direction in single channels of local and epicortical field potentials from monkey and human motor cortex. J. Physiology-Paris. 2004; 98: 498–506.10.1016/j.jphysparis.2005.09.016
  • Schalk G, Kubanek J, Miller K, et al. Decoding two-dimensional movement trajectories using electrocorticographic signals in humans. J. Neural Eng. 2007; 4: 264.10.1088/1741-2560/4/3/012
  • Kubanek J, Miller K, et al. Decoding flexion of individual fingers using electrocorticographic signals in humans. J.Neural Eng. 2009; 6: 066001.10.1088/1741-2560/6/6/066001
  • Andersen R, Buneo C. Intentional maps in posterior parietal cortex. 2002;25:189-220. J. Neurosci. 2002; 25: 189–220.10.1146/annurev.neuro.25.112701.142922
  • Bonini L, Serventi F, Simone L, et al. Grasping neurons of monkey parietal and premotor cortices encode action goals at distinct levels of abstraction during complex action sequences. J. Neurosci. 2011; 31: 5876–5886.10.1523/JNEUROSCI.5186-10.2011
  • Carmena JM, Lebedev MA, Crist RE, et al. Learning to control a brain–machine interface for reaching and grasping by primates. J. Neurophysiol. Nov. 2003; 1: E42.10.1371/journal.pbio.0000042
  • Hatsopoulos N, Joshi J, O’Leary JG. Decoding continuous and discrete motor behaviors using motor and premotor cortical ensembles. J. Neurophysiol. Aug 2004; 92: 1165–1174.10.1152/jn.01245.2003
  • Talairach J, Tournoux P. IEEE Trans. Biomed. Eng. New York, NY: Thieme Medical , Inc.; 1988.
  • Kubanek J, Schalk G. NeuralAct: A Tool to Visualize Electrocortical (ECoG) Activity on a Three-Dimensional Model of the Cortex. Neuroinformatics. 2015; 13: 167–174.10.1007/s12021-014-9252-3
  • Lancaster JL, Woldorff MG, Parsons LM, et al. Automated talairach atlas labels for functional brain mapping. Hum Brain Mapp. Jul 2000; 10: 120–131.10.1002/(ISSN)1097-0193
  • Schalk G, McFarland D, Hinterberger T, et al. BCI2000: a general-purpose brain-computer interface (BCI) system. IEEE Trans. Biomed. Eng. Jan 2004; 51: 1034–1043.10.1109/TBME.2004.827072
  • Schalk G, Mellinger J. A Practical Guide to Brain-Computer Interfacing with BCI2000, 1st ed, Springer, London, UK, 2010.
  • Georgopoulos AP, Schwartz AB, Kettner RE. Neuronal population coding of movement direction. Science. Sep 1986; 233: 1416–1419.10.1126/science.3749885
  • Cogan G, Thesen T, Carlson C, et al. Sensory-motor transformations for speech occur bilaterally. Nature. 2014; 507: 94–98.10.1038/nature12935
  • Ritaccio A, Brunner P, Cervenka MC, et al. Proceedings of the first international workshop on advances in electrocorticography. Epilepsy Behav. Nov 2010; 19: 204–215.10.1016/j.yebeh.2010.08.028
  • Brunner P, Ritaccio AL, Lynch TM, et al. A practical procedure for real-time functional mapping of eloquent cortex using electrocorticographic signals in humans. Epilepsy Behav. Jul 2009; 15: 278–286.10.1016/j.yebeh.2009.04.001
  • Wang Z, Gunduz A, Brunner P, et al. Decoding onset and direction of movements using Electrocorticographic (ECoG) signals in humans. Front. neuroeng. 2012;5:15.
  • Buneo C, Andersen R. The posterior parietal cortex: Sensorimotor interface for the planning and online control of visually guided movements. Neuropsychologia. 2006; 44: 2594–2606.10.1016/j.neuropsychologia.2005.10.011
  • WG Darling, Rizzo M, and Butler AJ. Disordered sensorimotor transformations for reaching following posterior cortical lesions. neuropsychologia 39, 237–254 (2001). Neuropsychologia. 2001: 39: 237–254. 10.1016/S0028-3932(00)00113-5
  • Milner AD, Paulignan Y, Dijkerman HC, et al. A paradoxical improvement of misreaching in optic ataxia: new evidence for two separate neural systems for visual localization. Proc R soc London B. 1999; 266: 2225–2229.10.1098/rspb.1999.0912
  • Karnath H-O. New insights into the functions of the superior temporal cortex. Nat. Rev. Neurosci. 2001; 2: 568–57610.1038/35086057
  • Boussaoud D, Barth TM, Wise SP. Effects of gaze on apparent visual responses of frontal cortex neurons. Exp Brain Res. Jan 1993; 93: 423–434.
  • Funahashi S, Inoue M, Kubota K. Delay-period activity in the primate prefrontal cortex encoding multiple spatial positions and their order of presentation. Behav. Brain Res. 1997; 84: 203–223.10.1016/S0166-4328(96)00151-9
  • Tanji J, Hoshi E. Role of the lateral prefrontal cortex in executive behavioral control. Physiol. Rev. 2008; 88: 37–57.10.1152/physrev.00014.2007
  • Brass M, von Cramon D. The role of the frontal cortex in task preparation. Cereb. Cortex. 2002; 12: 908–914.10.1093/cercor/12.9.908
  • Gupta D, Hill N, Brunner P, Gunduz A, Ritaccio AL, Schalk G. Simultaneous real-time monitoring of multiple cortical systems. J. Neural Eng. 11:056001, 2014.
  • Milekovic T, Fischer J, Pistohl T, et al. An online brain- machine interface using decoding of movement direction from the human electrocorticogram. J. Neural Eng. Aug. 2012; 9: 046003.10.1088/1741-2560/9/4/046003
  • McFarland DJ, Sarnacki WA, Wolpaw JR. Electroencephalo graphic (EEG) control of three-dimensional movement. J. Neural Eng. 2010;7(3):036007.10.1088/1741-2560/7/3/036007
  • Freeman WJ, Rogers LJ, Holmes MD, et al. Spatial spectral analysis of human electrocorticograms including the alpha and gamma bands. J. Neurosci. Methods. Feb 2000; 95(2): 111–121.10.1016/S0165-0270(99)00160-0
  • Slutzky MW, Jordan LR, Krieg T, et al. Optimal spacing of surface electrode arrays for brain-machine interface applications. J. Neural Eng. Apr 2010; 7: 026004.10.1088/1741-2560/7/2/026004
  • EC Leuthardt, Freudenberg Z, Bundy D, et al. Microscale recording from human motor cortex: implications for minimally invasive electrocorticographic brain-computer interfaces. PLoS ONE. Jul 2009; 27: E10.10.3171/2009.4.FOCUS0980
  • Nakanishi Y, Yanagisawa T, Shin D, et al. Prediction of Three-Dimensional Arm Trajectories Based on ECoG Signals Recorded from Human Sensorimotor Cortex. PLoS ONE. Aug. 2013; 8: e72085.10.1371/journal.pone.0072085
  • Gharabaghi A, Naros G, Walter A, et al, “Epidural electrocorticography of phantom hand movement following long-term upper-limb amputation.” Front. human neurosci. 2014; 8: 285.
  • Coon WG, Gunduz A, Brunner P, et al. Oscillatory phase modulates the timing of neuronal activations and resulting behavior. NeuroImage, 2016; 133: 294–301.
  • Jeannerod M. The representing brain: Neural correlates of motor intention and imagery. Behavioural Brain Research 1994;17:187–245.
  • Sanes JN. Neurophysiology of preparation, movement and imagery. Behavioral and Brain Sciences. 1994;17:221–223.
  • Kranczioch C, Mathews S, Dean P, Sterr A. On the equivalence of executed and imagined movements: Evidence from lateralized motor and nonmotor potentials. Human Brain Mapping. 2009;30(10):3275–3286.
  • Holper L, Scholkmann F, Shalom DE, Wolf M. Extension of mental preparation positively affects motor imagery as compared to motor execution: A functional near-infrared spectroscopy study. Cortex. 2012;48:593–603.
  • Miller KJ, Schalk G, Fetz EE, den Nijs M, Ojemann JG, Rao RPN. Cortical activity during motor execution, motor imagery, and imagery-based online feedback. Proceedings of the National Academy of Sciences. 2010;107(9):4430–4435.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.