1,967
Views
11
CrossRef citations to date
0
Altmetric
Articles

Spatio-temporal analysis of error-related brain activity in active and passive brain–computer interfaces

ORCID Icon &
Pages 118-127 | Received 01 May 2019, Accepted 28 Aug 2019, Published online: 19 Nov 2019

References

  • Farwell LA, Donchin E. Talking off the top of your head: toward a mental prosthesis utilizing event- related brain potentials. Electroencephalogr Clin Neurophysiol. 1988;70(6):510–523.
  • Wolpaw JR, McFarland DJ, Neat GW, et al. An EEG-based brain-computer interface for cursor control. Electroencephalogr Clin Neurophysiol. 1991;78(3):252–259.
  • Pfurtscheller G, Brunner C, Schlögl A, et al. Mu rhythm (de) synchronization and EEG single-trial classification of different motor imagery tasks. NeuroImage. 2006;31(1):153–159.
  • McFarland DJ, Miner LA, Vaughan TM, et al. Mu and beta rhythm topographies during motor imagery and actual movements. Brain Topogr. 2000;12(3):177–186.
  • Mousavi M, Koerner AS, Zhang Q, et al. Improving motor imagery BCI with user response to feedback. Brain-Comput Interfaces. 2017;4(1–2):74–86.
  • de Sa, V.R. An interactive control strategy is more robust to non-optimal classification boundaries. ICMI’12 pp 579-586 October 22-26, 2012 Santa Monica, California, USA. 2012. DOI: 10.1145/2388676.2388798.
  • Chavarriaga R, Sobolewski A, Millán J. Errare machinale est: the use of error-related potentials in brain-machine interfaces. Front Neurosci. 2014;8:208.
  • Schalk G, Wolpaw JR, McFarland DJ, et al. EEG-based communication: presence of an error potential. Clin Neurophysiol. 2000;111(12):2138–2144.
  • Zander TO, Kothe C. Towards passive brain–computer interfaces: applying brain–computer interface technology to human–machine systems in general. J Neural Eng. 2011;8(2):025005.
  • Krol L, Andreessen L, Zander T. Passive brain-computer interfaces: A perspective on increased interactivity. Brain-Comput Interfaces Handb. 2018;69–86.
  • Zander TO, Krol LR, Birbaumer NP, et al. Neuroadaptive technology enables implicit cursor control based on medial prefrontal cortex activity. Proc Nat Acad Sci. 2016;113(52):14898–14903.
  • Zander TO, Brönstrup J, Lorenz R, et al. Advances in physiological computing. In: Fairclough SH, Gilleade K, editors. Towards BCI-based implicit control in human–computer interaction. London: Springer; 2014. p. 67–90.
  • Ferrez PW, Millán JD. Error-related EEG potentials generated during simulated brain–computer interaction. IEEE Trans Biomed Eng. 2008;55(3):923–929.
  • Blankertz B, Lemm S, Treder M, et al. Single-trial analysis and classification of ERP componentsa tutorial. NeuroImage. 2011;56(2):814–825.
  • Barachant A, Bonnet S, Congedo M, et al. Riemannian geometry applied to BCI classification. International Conference on Latent Variable Analysis and Signal Separation; Saint Malo, France. 2010. p. 629–636.
  • Congedo M, Barachant A, Bhatia R. Riemannian geometry for EEG-based brain-computer interfaces; a primer and a review. Brain-Comput Interfaces. 2017;4(3):155–174.
  • Kalunga EK, Chevallier S, Barthélemy Q, et al. Online SSVEP-based BCI using Riemannian geometry. Neurocomputing. 2016;191:55–68.
  • Barachant A, Congedo M. A plug&play P300 BCI using information geometry. arXiv Preprint. 2014; https://arxiv.org/abs/1409.0107.
  • Kalunga EK, Chevallier S, Barthélemy Q. Data augmentation in Riemannian space for brain-computer interfaces. STAMLINS; 2015.
  • Mousavi M, de Sa VR. Spatio-temporal analysis of feedback-related brain activity in brain-computer interfaces. NeurIPS 2018 Workshop on modeling and decision-making in the spatiotemporal domain; Montreal, Canada; 2018.
  • Mousavi M, de Sa VR. Towards elaborated feedback for training motor imagery brain computer interfaces. Proceedings of the 7th Graz Brain-Computer Interface Conference 2017; Graz, Austria; 2017. p. 332–337.
  • Makeig S, Bell AJ, Jung TP, et al. Independent component analysis of electroencephalographic data. Advances in neural information processing systems; Denver, Colorado; 1996. p. 145–151.
  • MATLAB. Natick, Massachusetts, United States: The MathWorks Inc.; 2018b.
  • Delorme A, Makeig S. EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J Neurosci Methods. 2004;134(1):9–21. Available from: http://www.sciencedirect.com/science/article/pii/S0165027003003479
  • Pedregosa F, Varoquaux G, Gramfort A, et al. Scikit-learn: machine learning in Python. J Mach Learn Res. 2011;12:2825–2830.
  • Barachant A, Bonnet S, Congedo M, et al. Multiclass brain–computer interface classification by Riemannian geometry. IEEE Trans Biomed Eng. 2012;59(4):920–928.
  • Blankertz B, Tomioka R, Lemm S, et al. Optimizing spatial filters for robust EEG single-trial analysis. IEEE Signal Process Mag. 2008;25(1):41–56.
  • Lotte F, Bougrain L, Cichocki A, et al. A review of classification algorithms for EEG-based brain– computer interfaces: a 10 year update. J Neural Eng. 2018;15(3):031005.
  • Noh E, Herzmann G, Curran T, et al. Using single-trial EEG to predict and analyze subsequent memory. NeuroImage. 2014;84:712–723.
  • Schäfer J, Strimmer K. A shrinkage approach to large-scale covariance matrix estimation and implications for functional genomics. Stat Appl Genet Mol Biol. 2005;4(1):2194–6302.
  • Ledoit O, Wolf M. Improved estimation of the covariance matrix of stock returns with an application to portfolio selection. J Empirical Finance. 2003;10(5):603–621.
  • Ang KK, Chin ZY, Wang C, et al. Filter bank common spatial pattern algorithm on BCI competition IV datasets 2a and 2b. Front Neurosci. 2012;6:39.
  • Yu K, Shen K, Shao S, et al. Common spatio-temporal pattern for single-trial detection of event- related potential in rapid serial visual presentation triage. IEEE Trans Biomed Eng. 2011;58(9):2513–2520.
  • Moakher M. A differential geometric approach to the geometric mean of symmetric positive-definite matrices. SIAM Journal on Matrix Analysis and Applications. 2005;26(3):735–747.