228
Views
1
CrossRef citations to date
0
Altmetric
Articles

A Functional BCI Model by the P2731 working group: Physiology

ORCID Icon, , ORCID Icon, &
Pages 54-81 | Received 26 Jan 2021, Accepted 12 Aug 2021, Published online: 05 Sep 2021

References

  • McFarland DJ, Wolpaw JR. EEG-based brain-computer interfaces. Curr Opin Biomed Eng. 2017;4:194–200.
  • Quaresima V, Ferrari M. Functional near-infrared spectroscopy (fNIRS) for assessing cerebral cortex function during human behavior in natural/social situations: a concise review. Organizational Res Methods. 2019;22(1):58.
  • Beveridge R, Wilson S, Coyle D. 3D graphics, virtual reality, and motion-onset visual evoked potentials in neurogaming. Prog Brain Res. 2016;228:329–353.
  • U.S. FDA guidance for offers a compendium of the hazards associated with brain implants: implanted Brain-Computer Interface (BCI) devices for patients with paralysis or amputation - non-clinical testing and clinical considerations, May 20, 2021
  • Woeppel K, Yang Q, Cui, XT. Recent advances in neural electrode–tissue interfaces. Curr Opin Biomed Eng. 2017;4:21–31.
  • Stephan W. Invasive vs. non-invasive neuronal signals for brain-machine interfaces: will one prevail? Front Neurosci. 2016;10. https://doi.org/10.3389/fnins.2016.00295http.
  • Saxena T, Karumbaiah L, Gaupp EA, et al. The impact of chronic blood-brain barrier breach on intracortical electrode function. Biomaterials. 2013 Jul;34(20):4703–4713.
  • Hong G, Lieber CM. Novel electrode technologies for neural recordings. Nat Rev Neurosci. 2019;20(6):330–345.
  • Fei H, Lycke R, Ganji M, et al. Ultraflexible neural electrodes for long-lasting intracortical recording. iScience. 2020;23:8.
  • Rihani RT, Stiller AM, Usoro JO, et al. Deployable, liquid crystal elastomer-based intracortical probes. Acta Biomater. 2020;111:54–64.
  • Kliemann D, Ralph Adolphs J, Tyszka M, et al. Intrinsic functional connectivity of the brain in adults with a single cerebral hemisphere. Cell Rep. 2019;29(8):2398–2407.e4.
  • Carne RP, Vogrin S, Litewka L, et al. Cerebral cortex: an MRI-based study of volume and variance with age and sex. J Clin Neurosci. 2006;13(1):60–72.
  • Zilles K, Palomero-Gallagher N. Cyto-, myelo-, and receptor architectonics of the human parietal cortex. NeuroImage. 2001;14(1):S12.
  • Glasser MF, Coalson TS, Robinson EC, et al. A multi-modal parcellation of human cerebral cortex. Nature. 2016 Aug 11;536(7615):171–178.
  • Van Essen DC, Drury HA, Joshi S, et al. Functional and structural mapping of human cerebral cortex: solutions are in the surfaces. Proc Nat Acad Sci. 1998;95(3):788–795.
  • Gogolla N. The insular cortex. Curr Biol. 2017;27(12):R580–R586.
  • Halpern ME, Güntürkün O, Hopkins WD, et al. Lateralization of the vertebrate brain: taking the side of model systems. J Neurosci. 2005 Nov 9;25(45):10351–10357.
  • Paradigms MI, Rupawala M, Dehghani H, et al. Shining a light on awareness: a review of functional near-infrared spectroscopy for prolonged disorders of consciousness. Front Neurol. 2018;Article 350:5.
  • Gratton G. The contralateral organization of visual memory: a theoretical concept and a research tool. Psychophysiology. 1998;35(6):638–647.
  • Sira CS, Mateer CA. Frontal Lobes. In: Aminoff MJ, Daroff RB, editors. Encyclopedia of the neurological sciences. Second ed. Boston, Massachusetts, USA: Academic Press; 2014. p. 358–365.
  • Goldberg ME. Parietal lobe. international encyclopedia of the social & behavioral sciences. 2001. London, UK: Elsevier; p. 11051–11054.
  • Simons JS, Johnsrude IS. Temporal lobes. In: Aminoff MJ, Daroff RB, editors. Encyclopedia of the neurological sciences. Second ed. Boston, Massachusetts, USA: Academic Press; 2014. p. 401–408.
  • Rogalsky C. Chapter 47 - the role of the anterior temporal lobe in sentence processing. In: Hickok G, Small SL, editors. Neurobiology of language. Boston, Massachusetts, USA: Academic Press; 2016. p. 587–595.
  • Deyoe EA, Lobe O. Encyclopedia of the human brain. Boston, Massachusetts, USA: Academic Press; 2002. p. 677–715.
  • Foundas AL, Knaus TA, Shields J. Broca’s area. In: Aminoff MJ, Daroff RB, editors. Encyclopedia of the neurological sciences. Vol. 544. Second ed. Boston, Massachusetts, USA: Academic Press; 2014.
  • Karbe H. Note that the borders of Wernicke’s area vary in different studies, Wernicke’s area. In: Aminoff MJ, Daroff RB, editors. Encyclopedia of the neurological sciences. 2nd ed. Boston, Massachusetts, USA: Academic Press; 2014. p. 751–752.
  • Tanaka K. Temporal Lobe. In: Smelser NJ, Baltes PB, editors. International encyclopedia of the social & behavioral sciences. Oxford, UK: Pergamon; 2001. p. 15595–15599.
  • Sheth Bhavin R, Ryan Y. Two visual pathways in primates based on sampling of space: exploitation and exploration of visual information. Front Integr Neurosci. 2016;10; pp. 1–2.
  • Kimura D. Cerebral dominance and the perception of verbal stimuli. Cana J Psychol. 1961;15(3):166–171.
  • Jerger J, Martin J. Hemispheric asymmetry of the right ear advantage in dichotic listening. Hear Res. 2004;198(1–2):125–136.
  • Van Essen DC, Donahue CJ, Glasser MF. Development and evolution of cerebral and cerebellar cortex. Brain Behav Evol. 2018;91(3):158–169.
  • My-MS. The cerebrum. [cited 2021 Jul 02]. https://my-ms.org/anatomy_brain_part1.htm
  • Zilles K, Palomero-Gallagher N, Amunts K. Cytoarchitecture and maps of the human cerebral cortex. In: Toga AW, editor. Brain mapping. Boston, Massachusetts, USA: Academic Press; 2015. p. 115–135.
  • Sarah J, Leda D. Glial cells and their function in the adult brain: a journey through the history of their ablation. Front Cell Neurosci. 2017;11:8.
  • Wen HT, Rhoton AL, Mussi ACM. Surgical anatomy of the brain, chap 2. In: editor, Winn HR. Youmans and winn neurological surgery. 7th ed. Philadelphia, PA: Elsevier; 2017.  p. 173;
  • Levitan IB, Kacmarek LK. The neuron. Oxford, UK: Oxford University Press; 2015. p. 33.
  • Britannica. The Editors of Encyclopaedia. “Node of Ranvier”. Encyclopedia Britannica. 2021. 2018 Dec 5, https://www.britannica.com/science/node-of-Ranvier.
  • Levitan IB, Kacmarek LK. The neuron. Oxford, UK: Oxford University Press; 2015. p. 8–14.
  • Nutma E, Van Gent D, Amor S, et al. Astrocyte and oligodendrocyte cross-talk in the central nervous system. Cells. 2020;9(3):600.
  • DeFelipe J, Fariñas I. The pyramidal neuron of the cerebral cortex: morphological and chemical characteristics of the synaptic inputs. Prog Neurobiol. 1992;39(6):566–567.
  • Kennedy PR, Bakay RA. Restoration of neural output from a paralyzed patient by a direct brain connection. Neuroreport. 1998 Jun 1;9(8):1707–1711.
  • Bartels J, Andreasen D, Ehirim P, et al. Neurotrophic electrode: method of assembly and implantation into human motor speech cortex. J Neurosci Methods. 2008;174(2):168–176.
  • Tudor M, Tudor L, Tudor KI. Hans Berger (1873-1941): povijest elektroencefalografije [Hans Berger (1873-1941): the history of electroencephalography]. Acta Med Croatica. 2005;59(4):307–313.
  • Britton JW, Frey LC, Hopp JL, et al., authors Louis EK, Frey LC, editors. Electroencephalography (EEG): an introductory text and atlas of normal and abnormal findings in adults, children, and infants [Internet]. Chicago: American Epilepsy Society; 2016. Appendix 6. A Brief History of EEG.
  • Vidal J. Toward Direct Brain-Computer Communication. In: Mullins LJ, editor. Annual review of biophysics and bioengineering. Vol. 2. Palo Alto: Annual Reviews, Inc.; 1973. p. 157–180.
  • Gibbs FA, Davis H, Lennox WG. The electro-encephanlogram in epilepsy and in conditions of impaired consciousness. Arch NeurPsych. 1935;34(6):1133–1148.
  • Quaresima V, Ferrari M. Functional near-infrared spectroscopy (fNIRS) for assessing cerebral cortex function during human behavior in natural/social situations: a concise review. Organizational Res Methods. 2019;22(1):46–68.
  • American electroencephalographic society guidelines for standard electrode position nomenclature. American Electroencephalographic Society; J Clin Neurophysiol. 1991;8(2):200–202. Journals@Ovid Full Text. Web. 28 November. 2020.
  • Linden DEJ. The P300: where in the brain is it produced and what does it tell us? Neuroscientist. 2005;11(6):569.
  • Haines DE. Neuroanatomy: an atlas of structures, sections, and systems. 4th ed. Philadelphia, Pennsylvania, USA: Williams & Wilkins; 1995. p. 46.
  • Matsushita K, Hirata M, Suzuki T, et al. A fully implantable wireless ECoG 128-channel recording device for human brain–machine interfaces: w-HERBS. Front Neurosci. 2018;12:511.
  • Paola P, Felix S, Antonia H, et al. Current status and issues regarding pre-processing of fNIRS neuroimaging data: an investigation of diverse signal filtering methods within a general linear model framework. Front Hum Neurosci. 2019;12:6.
  • Rupawala M, Dehghani H, Lucas S, et al. Shining a light on awareness: a review of functional near-infrared spectroscopy for prolonged disorders of consciousness. Front Neurol. 2018;Article 350:2.
  • Buxton RB, Frank LR. A model for the coupling between cerebral blood flow and oxygen metabolism during neural stimulation. J Cereb Blood Flow Metab. 1997 Jan;17(1):64–72.
  • Glover GH. Overview of functional magnetic resonance imaging. Neurosurg Clin N Am. 2011 Apr;22(2):133–9, vii.
  • Buxton RB, Wong EC, Frank LR. Dynamics of blood flow and oxygenation changes during brain activation: the balloon model. Magn Reson Med. 1998;39(6):855–864.
  • Rupawala M, Dehghani H, Lucas S, et al. Shining a light on awareness: a review of functional near-infrared spectroscopy for prolonged disorders of consciousness. Front Neurol. 2018;9(350):2–3.
  • Curtin A, Ayaz H. Chapter 22 - Neural efficiency metrics in neuroergonomics: theory and applications. In: Ayaz H, Dehais F, editors. Neuroergonomics. Boston, Massachusetts, USA: Academic Press; 2019. p. 133–140.
  • Quaresima V, Ferrari M. Functional near-infrared spectroscopy (fNIRS) for assessing cerebral cortex function during human behavior in natural/social situations: a concise review. Organizational Res Methods. 2019;22(1):47.
  • Stehling MK, Turner R, Mansfield P. Echo-planar imaging: magnetic resonance imaging in a fraction of a second, For instance, echo-planar imaging (EPI). Science. 1991 Oct 4;254(5028):43–50.
  • Larkum Matthew E, Petro Lucy S, Sachdev Robert NS, et al. A perspective on cortical layering and layer-spanning neuronal elements. Front Neuroanat. 2018;12:4–6.
  • Kropotov JD. Chapter 3.1 - Sensory systems and attention modulation. In: Kropotov JD, editor. Functional neuromarkers for psychiatry. Academic Press; Boston, Massachusetts, USA; 2016. p. 140–142. DOI:https://doi.org/10.1016/B978-0-12-410513-3.00011-5.
  • Gopikrishna D, Rangaprakash D, Luke O, et al. A new generation of brain-computer interfaces driven by discovery of latent EEG-fMRI linkages using tensor decomposition. Front Neurosci. 2017;11. DOI:https://doi.org/10.3389/fnins.2017.00246.
  • Michel Christoph M, Denis B. EEG source imaging: a practical review of the analysis steps. Front Neurol. 2019;10. DOI:https://doi.org/10.3389/fneur.2019.00325.
  • Hermiller MS, Chen YF, Parrish TB, et al. Evidence for immediate enhancement of hippocampal memory encoding by network-targeted theta-burst stimulation during concurrent fMRI. The Journal of Neuroscience. 2020;40(37):7155–7168.
  • Zich C, Debener S, Kranczioch C, et al. Real-time EEG feedback during simultaneous EEG–fMRI identifies the cortical signature of motor imagery. NeuroImage. 2015;114:438–447.
  • Singh SP. Magnetoencephalography: basic principles. Ann Indian Acad Neurol. 2014;17(Suppl 5):S107–12.
  • Zhang R, Xiao W, Ding Y, et al. Recording brain activities in unshielded Earth’s field with optically pumped atomic magnetometers. Sci Adv. 2020;6(24):eaba8792.
  • Rupawala M, Dehghani H, Lucas S, et al. Shining a light on awareness: a review of functional near-infrared spectroscopy for prolonged disorders of consciousness. Front Neurol. 2018;Article 350:7.
  • Waldert S, Preissl H, Demandt E, et al. Hand movement direction decoded from MEG and EEG. J Neurosci. 2008;28(4):1000–1008.
  • Sander TH, Preusser J, Mhaskar R, et al. Magnetoencephalography with a chip-scale atomic magnetometer. Biomed Opt Express. 2012;3(5):981–990.
  • See PROFESSOR Petra Ritter’s virtual brain project: [cited 2021 Jun 25]. https://www.thevirtualbrain.org/tvb/zwei
  • Kirschstein T, Köhling R. What is the source of the EEG? Clin EEG Neurosci. 2009;40(3):146–149.
  • Buzsáki G, Anastassiou C, Koch C. The origin of extracellular fields and currents — EEG, ECoG, LFP and spikes. Nat Rev Neurosci. 2012;13(6):407–420.
  • Levitan IB, Kacmarek LK. The neuron. Oxford University Press; Oxford, UK, 2015. p. 34–36.
  • Harilal P, Bipin N, Egidio D, et al. Computational modeling of single neuron extracellular electric potentials and network local field potentials using LFPsim. Frontiers in Computational Neuroscience. Vol 10, p. 1, 2016] [Pesaran B. Uncovering the mysterious origins of local field potentials. Neuron. 2009;61(1):1–2.
  • Nicolas-Alonso LF, Gomez-Gil J. Brain computer interfaces, a review. Sensors. 2012;12(2):1221–1223.
  • Logothetis NK, Pauls J, Augath M, et al. Neurophysiological investigation of the basis of the fMRI signal. Nature. 2001;412(6843):150–157.
  • Harilal P, Bipin N, Egidio D, et al. computational modeling of single neuron extracellular electric potentials and network local field potentials using LFPsim. Front Comput Neurosci. 2016;10:65.
  • Tanaka T, Nakamura KC, Charpier S. Focal inputs are a potential origin of local field potential (LFP) in the brain regions without laminar structure. PLoS One. 2019;14(12):e0226028.
  • Mehring C, Rickert J, Vaadia E, et al. Inference of hand movements from local field potentials in monkey motor cortex. Nat Neurosci. 2003;6(12):1253–1254.
  • Andersen RA, Musallam S, Pesaran B. Selecting the signals for a brain-machine interface. Curr Opin Neurobiol. 2004 Dec;14(6):720–726.
  • Waldert S, Preissl H, Demandt E, et al. Ad aertsen, carsten mehring. hand movement direction decoded from MEG and EEG. J Neurosci. 2008;28(4):1000–1008.
  • Pesaran B. Uncovering the mysterious origins of local field potentials. Neuron. 2009 Jan 15;61(1):1–2.
  • Brandeis D, Lehmann D. Event-related potentials of the brain and cognitive process: approaches and applications. Neuropsychologia. 1986;24(1):153.
  • Kropotov JD. Chapter 1.6. In: Kropotov JD, editor: Functional neuromarkers for psychiatry. Academic Press; Boston, Massachusetts, USA; 2016. p. 59.
  • De Pascalis V. On the psychobiology of extraversion,  In R. M. Stelmack (Ed.), On the psychobiology of personality: Essays in honor of Marvin Zuckerman; pp. 295–298; Elsevier Science. https://doi.org/10.1016/B978-008044209-9/50017-8. 2004.
  • Woodman GF. A brief introduction to the use of event-related potentials in studies of perception and attention. Atten Percept Psychophys. 2010;72(8):2031–2046.
  • Creel DJ Visually evoked potentials. Webvision, 29 Nov 2020
  • Comerchero MD, Polich J. P3a and P3b from typical auditory and visual stimuli. Clin Neurophysiol. 1999;110(1):24–30.
  • Polich J. Updating P300: an integrative theory of P3a and P3b. Clin Neurophysiol. 2007;118(10):2130.
  • Kappenman ES, Farrens JL, Wendy Zhang W, et al. ERP CORE: an open resource for human event-related potential research. NeuroImage. 2021;225:117465.
  • Kropotov JD. Chapter 3.1 - Sensory systems and attention modulation. In: Kropotov JD, editor. Functional neuromarkers for psychiatry. Boston, Massachusetts, USA: Academic Press;; 2016. p. 66. DOI:https://doi.org/10.1016/B978-0-12-410513-3.00011-5.
  • Marchesotti S, Martuzzi R, Schurger A, et al. Cortical and subcortical mechanisms of brain-machine
  • Linden DEJ. The P300: where in the brain is it produced and what does it tell us? Neuroscientist. 2005;11(6):563–576.
  • Polich J. Updating P300: an integrative Theory of P3a and P3b. Clin Neurophysiol. 2007;118(10):2128–2148.
  • Morgan KK, Luu P, Tucker DM. Changes in P3b latency and amplitude reflect expertise acquisition in a football visuomotor learning task. PLoS One. 2016;11(4):2: e0154021.
  • Kropotov JD. Chapters 1-6, 2-2, 2-3l. In: Functional neuromarkers for psychiatry. Cambridge, Massachusetts, USA: Academic Press; 2016. p. 6–7.
  • Abhang PA, Gawali BW, Mehrotra SC. Chapter 2 - Technological basics of EEG recording and operation of apparatus. In: Abhang PA, Gawali BW, Mehrotra SC, editors. Introduction to EEG- and speech-based emotion recognition. Cambridge, Massachusetts, USA: Academic Press; 2016. p. 19.
  • Kropotov JD. Chapter 3.1 - Sensory Systems and Attention Modulation, Editor(s): Juri D. Kropotov, Functional Neuromarkers for Psychiatry, Academic Press, Cambridge, Massachusetts, USA, 2016.
  • Kropotov JD. Chapter 2.2 – alpha rhythms. In: Levy N, editor. Functional neuromarkers for psychiatry. San Diego: Academic Press; 2016. p. 89–105.
  • Kropotov JD. Chapter 3 - Beta rhythms. In: Kropotov JD, editor. Quantitative EEG, event-related potentials and neurotherapy. Cambridge, Massachusetts, USA: Academic Press; 2009. p. 59.
  • Başar E, Başar-Eroğlu C, Özerdem A, et al. Preface: application of brain oscillations to neuropsychiatric diseases: a new land? In: Başar E, Başar-Eroĝlu C, Özerdem A, et al., editors. Supplements to clinical neurophysiology. Vol. 62. Amsterdam, The Netherlands: Elsevier; 2013.
  • Gomez-Rodriguez M, Peters J, Hill N, et al. Closing the sensorimotor loop: haptic feedback facilitates decoding of motor imagery. J Neural Eng. 2011;8(3):036005.
  • Cheng MY, Hung CL, Huang CJ, et al. Expert-novice differences in SMR activity during dart throwing. Biol Psychol. 2015 Sep;110:212–218.
  • McFarland DJ, Krusienski DJ, Wolpaw JR. Brain-computer interface signal processing at the Wadsworth Center: mu and sensorimotor beta rhythms. Prog Brain Res. 2006;159:411–419.
  • Engel AK, Fries P. Chapter 3 - Neuronal oscillations, coherence, and consciousness. In: Laureys S, Gosseries O, Tononi G, editors. The neurology of consciousness. Second ed. Cambridge, Massachusetts, USA: Academic Press; 2016. p. 51.
  • Kübler A, Mattia D. Chapter 14 - Brain–computer interface based solutions for end-users with severe communication disorders. In: Laureys S, Gosseries O, Tononi G, editors. The neurology of consciousness. Second ed. Boston, Massachusetts, USA: Academic Press; 2016. p. 217–240.
  • Botrel L, Kübler A. Week-long visuomotor coordination and relaxation trainings do not increase sensorimotor rhythms (SMR) based brain-computer interface performance. Behav Brain Res. 2019 Oct 17;372: 111993.
  • Alkadhi H, Brugger P, Boendermaker SH, et al. What disconnection tells about motor imagery: evidence from paraplegic patients. Cereb Cortex. 2005 Feb;15(2):131–140.
  • Boulay CB, Sarnacki WA, Wolpaw JR, et al. Trained modulation of sensorimotor rhythms can affect reaction time. Clin Neurophysiol. 2011 Sep;122(9):1822.
  • Zapała D, Zabielska-Mendyk E, Augustynowicz P, et al. The effects of handedness on sensorimotor rhythm desynchronization and motor-imagery BCI control. Sci Rep. 2020;10(1):2087.
  • Krusienski DJ, Schalk G, McFarland DJ, et al. A mu-rhythm matched filter for continuous control of a brain-computer interface. IEEE Trans Biomed Eng. 2007 Feb;54(2):273–280.
  • Rupawala M, Dehghani H, Lucas S, et al. Shining a light on awareness: a review of functional near-infrared spectroscopy for prolonged disorders of consciousness. Front Neurol. 2018;Article 350:5–6.
  • Ono T, Shindo K, Kawashima K, et al. Brain-computer interface with somatosensory feedback improves functional recovery from severe hemiplegia due to chronic stroke. Front Neuroeng. 2014;7:19.
  • Allison B, Faller J, Neuper C. BCIs that use steady-state visual evoked potentials or slow cortical potentials. In: Jonathon R Wolpaw, Elizabeth Winter Wolpaw, editors. Brain–computer interfaces: principles and practice. Oxford, UK: Oxford University Press; 2012.
  • Christoph G, Brendan A, Bernhard G, et al. How many people could use an SSVEP BCI? Front Neurosci. 2012;6:5–6.
  • Han CH, Kim YW, Kim DY, et al. Electroencephalography-based endogenous brain–computer interface for online communication with a completely locked-in patient. J Neuroeng Rehabil. 2019;16(1):18.
  • Li T, Zhang J, Xue T, et al. Development of a Novel Motor Imagery Control Technique and Application in a Gaming Environment. Comput Intell Neurosci. 2017;2017:5863512, 16 pages.
  • Axmacher N, Leszczynski M, Fell J. Cross-frequency coupling and memory. Abstracts/Clinical Neurophysiology 127 (2016) e29, Tzvetan Popov, Ole Jensen, Jan-Mathijs Schoffelen. Dorsal and ventral cortices are coupled by cross-frequency interactions during working memory. NeuroImage. 2018;178:277–286.
  • Jo HG, Naranjo JR, Hinterberger T, et al. Phase synchrony in slow cortical potentials is decreased in both expert and trained novice meditators. Neurosci Lett. 2019 May 14;701: 142–145.
  • Birbaumer N. Slow cortical potentials: plasticity, operant control, and behavioral effects. Neuroscientist. 1999;5(2):74–78.
  • Birbaumer N, Elbert T, Canavan AG, et al. Slow potentials of the cerebral cortex and behavior. Physiol Rev. 1990;70(1):2.
  • Ute Strehl, Pascal Aggensteiner, Daniel Wachtlin, Daniel Brandeis, Bjorn Albrecht, Maria Arana, Christiane Bach, Tobias Banaschewski, Thorsten Bogen, Andrea Flaig-Rohr, Christine M. Freitag, Yvonne Fuchsenberger, Stephanie Gest, Holger Gevensleben, Laura Herde, Sarah Hohmann, Tanja Legenbauer, Anna-Maria Marx, Sabina Millenet, Benjamin Pniewski, Aribert Rothenberger, Christian Ruckes, Sonja Worz and Martin Holtmann. Neurofeedback of slow cortical potentials in children with attention-deficit/hyperactivity disorder: a multicenter randomized trial controlling for unspecific effects. Front Hum Neurosci. 2017;11; pp 12–13.
  • Hasslinger J, D’Agostini Souto M, Folkesson Hellstadius L, et al. Neurofeedback in ADHD: a qualitative study of strategy use in slow cortical potential training. PLOS ONE. 2020;15(6):e0233343.
  • Birbaumer N. Slow cortical potentials: plasticity, operant control, and behavioral effects. Neuroscientist. 1999;5(2):77.
  • Tort ABL, Scheffer-Teixeira R, Souza BC, et al. Theta-associated high-frequency oscillations (110–160Hz) in the hippocampus and neocortex. Prog Neurobiol. 2013 Jan;100:1–14. doi: 10.1016/j.pneurobio.2012.09.002
  • Tort ABL, Scheffer-Teixeira R, Souza BC, et al. Theta-associated high-frequency oscillations (110–160Hz) in the hippocampus and neocortex. Prog Neurobiol. 2013;100:6.
  • Alkawadri R, Gaspard N, Goncharova II, et al. The spatial and signal characteristics of physiologic high frequency oscillations. Epilepsia. 2014 Dec;55(12):1986–1995.
  • Tort AB, Scheffer-Teixeira R, Souza BC, et al. Theta-associated high-frequency oscillations (110-160Hz) in the hippocampus and neocortex. Prog Neurobiol. 2013 Jan;100:1–14.
  • Axmacher N, Elger CE, Fell J. Ripples in the medial temporal lobe are relevant for human memory consolidation. Brain. 2008;131(7):1806–1817.
  • Frauscher B, von Ellenrieder N, Zelmann R, et al. High-frequency oscillations in the normal human brain. Ann Neurol. 2018;84(3):374–385.
  • Ole Jensen LL. Colgin, Cross-frequency coupling between neuronal oscillations. Trends Cogn Sci. 2007;11(7):267–269.
  • Viktor J, Viktor M. Cross-frequency coupling in real and virtual brain networks. Front Comput Neurosci. 2013;7:1.
  • Roux F, Uhlhaas PJ. Working memory and neural oscillations: α-γ versus θ-γ codes for distinct WM information? Trends Cogn Sci. 2014;18(1):16–25.
  • Munia TTK, Aviyente S. Time-frequency based phase-amplitude coupling measure for neuronal oscillations. Sci Rep. 2019;9(1):12441.
  • Yousef S, Anderson William S. Cross-frequency coupling based neuromodulation for treating neurological disorders. Front Neurosci. 2019;13:1.
  • Valencia M, Alegre M, Vicente R, et al. Cross-frequency coupling. Basic principles and measurements. Clin Neurophysiol. 2016;127(3):3.
  • Bagur S, Benchenane K. The theta rhythm mixes and matches gamma oscillations cycle by cycle. Neuron. 2018;100(4):768–771.
  • Grooms JK, Thompson GJ, Pan WJ, et al. Infraslow electroencephalographic and dynamic resting state network activity. Brain Connect. 2017;7(5):265–280.
  • Lakatos P, Shah AS, Knuth KH, et al. An oscillatory hierarchy controlling neuronal excitability and stimulus processing in the auditory cortex. J Neurophysiol. 2005 Sep;94(3):1904–1911.
  • Siebenhühner F, Wang SH, Arnulfo G, et al. Genuine cross-frequency coupling networks in human resting-state electrophysiological recordings. PLoS Biol. 2020;18(5):5.
  • Aru J, Aru J, Priesemann V, et al. Untangling cross-frequency coupling in neuroscience. Curr Opin Neurobiol. 2015;31:51–61.
  • Hughes C, Herrera A, Gaunt R, et al. Bidirectional brain-computer interfaces. Handb Clin Neurol. 2020;168:163–181.
  • Benvenuto A, Raspopovic S, Hoffmann KP, et al. Intrafascicular thin-film multichannel electrodes for sensory feedback: evidences on a human amputee. Annu Int Conf IEEE Eng Med Biol Soc. 2010;2010:1800–1803.
  • Mussa-Ivaldi FA, Miller LE. Brain–machine interfaces: computational demands and clinical needs meet basic neuroscience. Trends Neurosci. 2003;26(6):331.
  • Bosking WH, Beauchamp MS, Yoshor D. Electrical stimulation of visual cortex: relevance for the development of visual cortical prosthetics. Annu Rev Vis Sci. 2017 Sep 15;3(1):141–166.
  • Chuang AT, Margo CE, Greenberg PB. Retinal implants: a systematic review. Br. J. Ophthalmol. 2014;98(7):852–856.
  • Mills JO, Jalil A, Stanga PE. Electronic retinal implants and artificial vision: journey and present. Eye (Lond). 2017;31(10):1383–1398.
  • Manfredi G, Colombo E, Barsotti J, et al. Photochemistry of organic retinal prostheses. Annu Rev Phys Chem. 2019;70(1):99–121.
  • Chenais NAL, Airaghi Leccardi MJI, Ghezzi D. Photovoltaic retinal prosthesis restores high-resolution responses to single-pixel stimulation in blind retinas. Commun Mater. 2021;2(1):28.
  • Klaes C, Shi Y, Kellis S, et al. A cognitive neuroprosthetic that uses cortical stimulation for somatosensory feedback. J Neural Eng. 2014 Oct;11(5):056024.
  • Caldwell DJ, Cronin JA, Wu J, et al. Direct stimulation of somatosensory cortex results in slower reaction times compared to peripheral touch in humans. Sci Rep. 2019;9(1):3292.
  • Mazurek KA, Schieber MH. Injecting Information into the Mammalian Cortex: progress, challenges, and promise. Neuroscientist. 2021 Apr;27(2):130–132.
  • Flesher SN, Collinger JL, Foldes ST, et al. Intracortical microstimulation of human somatosensory cortex. Sci Transl Med. 2016 Oct 19;8(361):361ra141.
  • Zeng H, Wang Y, Wu C, et al. Closed-loop hybrid gaze brain-machine interface based robotic arm control with augmented reality feedback. Front Neurorobot. 2017;11:60.
  • Collinger JL, Wodlinger B, Downey JE, et al. High-performance neuroprosthetic control by an individual with tetraplegia. Lancet. 2013;381(9866):557–564.
  • Quick KM, Weiss JM, Clemente F, et al. Intracortical microstimulation feedback improves grasp force accuracy in a human using a brain-computer interface. Annu Int Conf IEEE Eng Med Biol Soc. 2020;2020:3355–3358.
  • Flesher SN, Downey JE, Weiss JM, et al. A brain-computer interface that evokes tactile sensations improves robotic arm control. Science. 2021 May 21;372(6544):831–836.
  • Caldwell David J, Ojemann Jeffrey G, Rao Rajesh PN. Direct electrical stimulation in electrocorticographic brain–computer interfaces: enabling technologies for input to cortex. Front Neurosci. 2019;13:3.
  • Mazurek KA, Schieber MH. injecting information into the mammalian cortex: progress, challenges, and promise. Neuroscientist. 2021 Apr;27(2):129–142.
  • Boulay CB, Sarnacki WA, Wolpaw JR, et al. Trained modulation of sensorimotor rhythms can affect reaction time. Clin Neurophysiol. 2011;122(9):1820–1826.
  • Millán José del R, Rüdiger R, Gernot M-P, et al. combining brain–computer interfaces and assistive technologies: state-of-the-art and challenges. Front Neurosci. 2010;4; 9–10.
  • Guggenmos DJ, Azin M, Barbay S, et al. Restoration of function after brain damage using a neural prosthesis. Proc Natl Acad Sci USA. 2013;110(52):21177–21182.
  • George R, Chiappalone M, Giugliano M, et al. Plasticity and adaptation in neuromorphic biohybrid systems. iScience. 2020;23(10):101589.
  • Kennedy PR, Bakay RAE, Moore MM, et al. Direct control of a computer from the human central nervous system. IEEE Trans Neural Syst Rehabil Eng. 2000;8(2):198–202.
  • Mussa-Ivaldi FA, Miller LE. Brain–machine interfaces: computational demands and clinical needs meet basic neuroscience. Trends Neurosci. 2003;26(6):330.
  • Collinger JL, Wodlinger B, Downey JE, et al. High-performance neuroprosthetic control by an individual with tetraplegia. Lancet. 2013;381(9866):562.
  • Marchesotti S, Martuzzi R, Schurger A, et al. Cortical and subcortical mechanisms of brain-machine interfaces. Hum Brain Mapp. 2017 Jun;38(6):2971–2989.
  • Kropotov JD. Chapter 4.5 “Transcranial magnetic stimulation” in functional neuromarkers for psychiatry. Academic Press; Boston, Massachusetts, USA; 2016. p. 59.
  • Pels EGM, Aarnoutse EJ, Leinders S, et al. Stability of a chronic implanted brain-computer interface in late-stage amyotrophic lateral sclerosis. Clin Neurophysiol. 2019;130(10):1798–1803.
  • Szarowski DH, Andersen MD, Retterer S, et al. Brain responses to micro-machined silicon devices. Brain Res. 2003;983(1–2):23–35.
  • Hong G, Viveros RD, Zwang TJ, et al. Tissue-like neural probes for understanding and modulating the brain. Biochemistry. 2018;57(27):3997.
  • Rizzi G, Scrivani A, Fini M, et al. Biomedical coatings to improve the tissue-biomaterial interface. Int J Artif Organs. 2004;27(8):649–657.
  • Bowen J, Chaofan G, Guo Z, et al. Flexible and stretchable opto-electric neural interface for low-noise electrocorticogram recordings and neuromodulation in vivo. Biosens Bioelectron. 2020;153. DOI:https://doi.org/10.1016/j.bios.2020.112009.
  • Fekete Z, Pongrácz A. Multifunctional soft implants to monitor and control neural activity in the central and peripheral nervous system: a review. Sens Actuators B Chem. 2017;243:1214–1223.
  • Axpe E, Orive G, Franze K, et al. Towards brain-tissue-like biomaterials. Nat Commun. 2020;11(1):3423.
  • Hong G, Viveros RD, Zwang TJ, et al. Tissue-like neural probes for understanding and modulating the brain. Biochemistry. 2018;57(27):3995–4004.
  • Hong G, Yang X, Zhou T, et al. Mesh electronics: a new paradigm for tissue-like brain probes. Curr Opin Neurobiol. 2018;50:33.
  • Mazurek KA, Schieber MH. injecting information into the mammalian cortex: progress, challenges, and promise. Neuroscientist. 2021;27(2):139.
  • Jiang X, Bian GB, Tian Z. Removal of artifacts from EEG signals: a review. Sensors (Basel). 2019 Feb 26;19(5):987.
  • Yılmaz G, Ungan P, Sebik O, et al. Interference of tonic muscle activity on the EEG: a single motor unit study. Front Hum Neurosci. 2014;8:504.
  • Birbaumer N, Elbert T, Canavan A, et al. Slow Potentials of the Cerebral Cortex and Behavior. Physiol Rev. 1990;70(1):10–11.
  • Creel DJ “VEP recording methods”. in visually evoked potentials. Webvision. Moran Eye Center, Nov 29, 2020. http://webvision.med.utah.edu/book/electrophysiology/visually-evoked-potentials; accessed 20 May 2021.
  • Hinrichs H, Scholz M, Baum AK, et al. Comparison between a wireless dry electrode EEG system with a conventional wired wet electrode EEG system for clinical applications. Sci Rep. 2020;10(1):5218.
  • Zhang L, Kumar KS, He H, et al. Fully organic compliant dry electrodes self-adhesive to skin for long-term motion-robust epidermal biopotential monitoring. Nat Commun. 2020;11(1):4683.
  • Fenoy AJ, Simpson RK Jr. Risks of common complications in deep brain stimulation surgery: management and avoidance. J Neurosurg. 2014 Jan;120(1):132–139.
  • Fenoy AJ, Simpson RK Jr. Management of device-related wound complications in deep brain stimulation surgery. J Neurosurg. 2012 Jun;116(6):1324–1332.
  • Dimiter P, Jean D. Mechanical and biological interactions of implants with the brain and their impact on implant design. Front Neurosci. 2016;10:4.
  • Polikov VS, Tresco PA, Reichert WM. Response of brain tissue to chronically implanted neural electrodes. J Neurosci Methods. 2005;148(1):1–18.
  • Mowla M Rakibul, Huggins J E, Thompson David E. Enhancing P300-BCI performance thorugh latency estimation. Brain-Computer Interfaces. 2017;4(3):137–145.
  • Lugo ZR, Pokorny C, Pellas F, et al. Mental imagery for brain-computer interface control and communication in non-responsive individuals. Ann Phys Rehabil Med. 2020;63(1):21–27.
  • Blankertz B, Sannelli C, Sebastian Halder EM, et al. Neurophysiological predictor of SMR-based BCI performance. NeuroImage. 2010;51(4):1303–1309.
  • Emami Z, Chau T. The effects of visual distractors on cognitive load in a motor imagery brain-computer interface. Behav Brain Res. 2020;378:112240.
  • Fekete Z, Németh A, Márton G, et al. Experimental study on the mechanical interaction between silicon neural microprobes and rat dura mater during insertion. J Mater Sci Mater Med. 2015;26:70.
  • O’Connell RG, Balsters JH, Kilcullen SM, et al. A simultaneous ERP/fMRI investigation of the P300 aging effect. Neurobiol Aging. 2012;33(10):2448–2461.
  • Fjell AM, Rosquist H, Walhovd KB. Instability in the latency of p3a/p3b brain potentials and cognitive function in aging. Neurobiol Aging. 2009;30(12):2065–2079.
  • Perdikis S, Tonin L, Saeedi S, et al. The Cybathlon BCI race: successful longitudinal mutual learning with two tetraplegic users. PLoS Biol. 2018;16(5):e2003787.
  • Zisk AH, Borgheai SB, McLinden J, et al. P300 latency jitter and its correlates in people with amyotrophic lateral sclerosis. Clin Neurophysiol. 2021;132(2):632–642.
  • Francesca Schettini, Monica Risetti, Pietro Arico, Rita Formisano, Fabio Babiloni, Donatella Mattia, Febo Cincotti. P300 latency Jitter occurrence in patients with disorders of consciousness: toward a better design for Brain Computer Interface applications. 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC); Milan, Italy; 2015. p. 6178–6181. doi: https://doi.org/10.1109/EMBC.2015.7319803
  • Mowla MR, Huggins JE, Natarajan B, et al. P300 latency estimation using least mean squares filter. Annu Int Conf IEEE Eng Med Biol Soc. 2018 Jul;2018:1976–1979.
  • Narayanan RT, Udvary D, Oberlaender M. Cell type-specific structural organization of the six layers in rat barrel cortex. Front Neuroanat. 2017;11. DOI:https://doi.org/10.3389/fnana.2017.00091
  • Ioan O, Stephano C, Noga Brian R. What is the evidence for inter-laminar integration in a prefrontal cortical minicolumn? Front Neuroanat. 2017;11. p. 9. https://doi.org/10.3389/fnana.2017.00116
  • Vassanelli S, Mahmud M, Girardi S, et al. On the way to large-scale and high-resolution brain-chip interfacing. Cogni Comput. 2012;4(1):71–81.
  • Sempreboni D, Luca V. Privacy, security and trust in the internet of neurons; 11 July 2018. arXiv:1807.06077 [cs.CY]
  • Mahmud M, Vassanelli S. Processing and analysis of multichannel extracellular neuronal signals: state-of-the-art and challenges. Front Neurosci. 2016;10:248.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.