195
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

A deep learning method for classification of steady-state visual evoked potentials in a brain-computer interface speller

ORCID Icon & ORCID Icon
Pages 63-78 | Received 28 Mar 2022, Accepted 05 Jan 2023, Published online: 02 Feb 2023

References

  • Wolpaw JR, McFarland DJ, Vaughan TM. Brain-computer interface research at the Wadsworth Center. IEEE Trans Neural Syst Rehabil Eng. 2000;8(2):222–226.
  • Birbaumer N. Breaking the silence: brain–computer interfaces (BCI) for communication and motor control. Psychophysiology. 2006;43(6):517–532.
  • Nijboer F, Sellers EW, Mellinger J, et al. A P300-based brain–computer interface for people with amyotrophic lateral sclerosis. Clin Neurophysiol. 2008;119(8):1909–1916.
  • Wolpaw JR, Ramoser H, McFarland DJ, et al. EEG-based communication: improved accuracy by response verification. IEEE Trans Neural Syst Rehabil Eng. 1998;6(3):326–333.
  • Wang Y, Gao X, Hong B, et al. Brain-computer interfaces based on visual evoked potentials. IEEE Eng Med Biol Magazine. 2008;27(5):64–71.
  • Chen X, Chen Z, Gao S, et al. A high-itr ssvep-based bci speller. Brain-Comput Interfaces. 2014;1(3–4):181–191.
  • Herrmann CS. Human EEG responses to 1–100 Hz flicker: resonance phenomena in visual cortex and their potential correlation to cognitive phenomena. Exp Brain Res. 2001;137(3–4):346–353.
  • Wang Y, Wang R, Gao X, et al. A practical VEP-based brain-computer interface. IEEE Trans Neural Syst Rehabil Eng. 2006;14(2):234–240.
  • Müller-Putz GR, Scherer R, Brauneis C, et al. Steady-state visual evoked potential (SSVEP)-based communication: impact of harmonic frequency components. J Neural Eng. 2005;2(4):123.
  • Cheng M, Gao X, Gao S, et al. Design and implementation of a brain-computer interface with high transfer rates. IEEE Trans Biomed Eng. 2002;49(10):1181–1186.
  • Nakanishi M, Wang Y, Wang Y-T, et al. A comparison study of canonical correlation analysis based methods for detecting steady-state visual evoked potentials. PloS one. 2015;10(10):e0140703.
  • Lin Z, Zhang C, Wei W, et al. “Frequency recognition based on canonical correlation analysis for SSVEP-based BCIs. IEEE Trans Biomed Eng. 2006;53(12):2610–2614.
  • Zhang X, Yao L, Sheng QZ, et al. Converting your thoughts to texts: enabling brain typing via deep feature learning of eeg signals, in IEEE international conference on pervasive computing and communications (PerCom), Athens. IEEE; 2018.
  • Nguyen T-H, Chung W-Y. A single-channel SSVEP-based BCI speller using deep learning. IEEE Access. 2018;7:1752–1763.
  • Waytowich N, Lawhern VJ, Garcia JO, et al. Compact convolutional neural networks for classification of asynchronous steady-state visual evoked potentials. J Neural Eng. 2018;15(6):066031.
  • Jamison KW, Roy AV, Sheng H, et al. SSVEP signatures of binocular rivalry during simultaneous EEG and fMRI. J Neurosci Methods. 2015;243:53–63.
  • Hachem A, Khelifa MMB, Alimi AM, et al. Effect of fatigue on ssvep during virtual wheelchair navigation. J Theor Appl Inf Technol. 2014;65(1):1–10.
  • Zhang Y, Jin J, Qing X, et al. LASSO based stimulus frequency recognition model for SSVEP BCIs. Biomed Signal Process Control. 2012;7(2):104–111.
  • Bin G, Gao X, Yan Z, et al. An online multi-channel SSVEP-based brain–computer interface using a canonical correlation analysis method. J Neural Eng. 2009;6(4):046002.
  • Alexander C, Yongtian H, Contreras-Vidal JL. Deep learning for electroencephalogram (EEG) classification tasks: a review. J Neural Eng. 2019;16(3). 10.1088/1741-2552/ab0ab5
  • Goodfellow I, Bengio Y, Courville A. Deep learning. Cambridge, Massachusetts: MIT press; 2016.
  • Cecotti H. A time–frequency convolutional neural network for the offline classification of steady-state visual evoked potential responses. Pattern Recognit Lett. 2011;32(8):1145–1153.
  • Kwak N-S, Müller K-R, Lee S-W. A convolutional neural network for steady state visual evoked potential classification under ambulatory environment. PloS one. 2017;12(2):e0172578.
  • Podmore JJ, Breckon TP, Aznan NKN, et al. On the relative contribution of deep convolutional neural networks for SSVEP-based bio-signal decoding in BCI speller applications. IEEE Trans Neural Syst Rehabil Eng. 2019;27(4):611–618.
  • Wang Y, Chen X, Gao X, et al. A benchmark dataset for SSVEP-based brain–computer interfaces. IEEE Trans Neural Syst Rehabil Eng. 2016;25(10):1746–1752.
  • Robert C. Machine learning, a probabilistic perspective. Cambridge, Massachusetts: MIT press; 2012.
  • Kingma DP, Jimmy B. Adam: a method for stochastic optimization. arXiv preprint arXiv. 2014;1412:6980.
  • Powers DM. Evaluation: from precision, recall and F-measure to ROC, informedness, markedness and correlation. arXiv preprint arXiv. 2020;2010:16061.
  • Caruana R, Lawrence S, Giles C. Overfitting in neural nets: backpropagation, conjugate gradient, and early stopping. Adv Neural Inf Process Syst. 2000;13:381–387.
  • Diez PF, Mut V, Laciar E, et al. A comparison of monopolar and bipolar EEG recordings for SSVEP detection. in In 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology, Buenos Aires, Argentina; IEEE; 2010.
  • Chen Y, Han X, Wang Y, et al. A frequency recognition method based on multitaper spectral analysis and SNR estimation for SSVEP-based brain-computer interface. in In 2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Jeju Island, Korea; pp.1930–1933, IEEE; 2017.
  • Kumar GRK, Ramasubba Reddy M, et al. Filter bank extensions for subject non-specific SSVEP based BCIs. in In 2019 9th International IEEE/EMBS Conference on Neural Engineering (NER), San Francisco, CA-USA; pp.627–630, IEEE; 2019.
  • Liu T, Zhang Y, Wang L, et al. Fusing canonical coefficients for frequency recognition in SSVEP-based BCI. IEEE Access. 2019;7:52467–52472.
  • Oikonomou VP, Nikolopoulos S, Kompatsiaris I. A Bayesian multiple kernel learning algorithm for ssvep bci detection. IEEE J Biomed Health Inform. 2018;23(5):1990–2001.
  • Yang C, Han X, Wang Y, et al. A dynamic window recognition algorithm for SSVEP-based brain–computer interfaces using a spatio-temporal equalizer. Int J Neural Syst. 2018;28(10):1850028.
  • Aznan NKN, Bonner S, Connolly J, et al. On the classification of SSVEP-based dry-EEG signals via convolutional neural networks. in In 2018 IEEE International Conference on Systems, Man, and Cybernetics (SMC), Miyazaki, Japan; pp.3726–3731, IEEE; 2018.
  • Cecotti H. Convolutional neural networks for event-related potential detection: impact of the architecture. in In 2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Jeju Island, Korea; pp.2031–2034, IEEE; 2017.
  • Jalilpour S, Hajipour Sardouie S, Mijani A. A novel hybrid BCI speller based on RSVP and SSVEP paradigm. Comput Methods Programs Biomed. 2020;187:105326.
  • Gao H, Liu Z, Van Der Maaten L, et al. Densely connected convolutional networks. In Proceedings of the IEEE conference on computer vision and pattern recognition, Honolulu, Hawaii; pp. 4700–4708, 2017.
  • Saha S, Baumert M. Intra-and inter-subject variability in EEG-based sensorimotor brain computer interface: a review. Front Comput Neurosci. 2020;87:13.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.