1,478
Views
16
CrossRef citations to date
0
Altmetric
Special Section: Representing mental representations: Neuroscientific and computational approaches to information processing in the brain

Dynamic information processing states revealed through neurocognitive models of object semantics

References

  • Bar, M., Kassam, K. S., Ghuman, A. S., Boshyan, J., Schmid, A. M., Dale, A. M., … Halgren, E. (2006). Top-down facilitation of visual recognition. Proceedings of the National Academy of Sciences, 103, 449–454. doi:10.1073/pnas.0507062103
  • Barense, M. D., Groen, I. I. A., Lee, A. C. H., Yeung, L., Brady, S. M., Gregori, M., … Henson, R. N. A. (2012). Intact memory for irrelevant information impairs perception in amnesia. Neuron, 75, 157–167. doi:10.1016/j.neuron.2012.05.014
  • Barense, M. D., Rogers, T., Bussey, T. J., Saksida, L. M., & Graham, K. S. (2010). Influence of conceptual knowledge on visual object discrimination: Insights from semantic dementia and MTL amnesia. Cerebral Cortex, 20, 2568–2582. doi:10.1093/cercor/bhq004
  • Buckley, M. J., Booth, M. C. A., Rolls, E. T., & Gaffan, D. (2001). Selective perceptual impairments after perirhinal cortex ablation. Journal of Neuroscience, 21, 9824–9836.
  • Bullier, J. (2001). Integrated model of visual processing. Brain Research Reviews, 36(2–3), 96-107. doi:10.1016/S0165-0173(01)00085-6
  • Bussey, T. J., & Saksida, L. M. (2002). The organization of visual object representations: A connectionist model of effects of lesions in perirhinal cortex. European Journal of Neuroscience, 15, 355–364. doi:10.1046/j.0953-816x.2001.01850.x
  • Campo, P., Poch, C., Toledano, R., Igoa, J. M., Belinchon, M., Garcia-Morales, I., Gil-Nagel, A. (2013). Anterobasal temporal lobe lesions alter recurrent functional connectivity within the ventral pathway during naming. Journal of Neuroscience, 33, 12679–12688. doi:10.1523/JNEUROSCI.0645-13.2013
  • Chan, A. M., Baker, J. M., Eskandar, E., Schomer, D., Ulbert, I., Marinkovic, K., …Halgren, E. (2011). First-p ass s electivity for semantic categories in human anteroventral temporal lobe. Journal of Neuroscience, 31, 18119–18129. doi:10.1523/JNEUROSCI.3122-11.2011
  • Cichy, R., Pantazis, D., & Oliva, A. (2014). Resolving human object recognition in space and time. Nature Neuroscience, 17, 455–462. doi:10.1038/nn.3635
  • Clarke, A., Devereux, B. J., Randall, B., & Tyler, L. K. (2014). Predicting the time course of individual objects with MEG. Cerebral Cortex. doi:10.1093/cercor/bhu203
  • Clarke, A., Taylor, K. I., Devereux, B., Randall, B., & Tyler, L. K. (2013). From perception to conception: How meaningful objects are processed over time. Cerebral Cortex, 23, 187–197. doi:10.1093/cercor/bhs002
  • Clarke, A., Taylor, K. I., & Tyler, L. K. (2011). The evolution of meaning: Spatio-temporal dynamics of visual object recognition. Journal of Cognitive Neuroscience, 23, 1887–1899. doi:10.1016/S0042-6989(02)00298-5
  • Clarke, A., & Tyler, L. K. (2014). Object-specific semantic coding in human perirhinal cortex. Journal of Neuroscience, 34, 4766–4775. doi:10.1523/JNEUROSCI.2828-13.2014
  • Cree, G. S., McNorgan, C., & McRae, K. (2006). Distinctive features hold a privileged status in the computation of word meaning: Implications for theories of semantic memory. Journal of Experimental Psychology: Learning, Memory, and Cognition, 32(4), 643–658. doi:10.1037/0278-7393.32.4.643
  • Cree, G. S., & McRae, K. (2003). Analyzing the factors underlying the structure and computation of the meaning of chipmunk, cherry, chisel, cheese, and cello (and many other such concrete nouns). Journal of Experimental Psychology: General, 132, 163–201. doi:10.1037/0096-3445.132.2.163
  • Crouzet, S. M., Kirchner, H., & Thorpe, S. J. (2010). Fast saccades toward faces: Face detection in just 100 ms. Journal of Vision, 10(4), 11– 17. doi:10.1167/10.4.16
  • Damasio, A. R. (1989). Time-locked multiregional retroactivation: A systems-level proposal for the neural substrates of recall and recognition. Cognition, 33(1–2), 25–62. doi:10.1016/0010-0277(89)90005-X
  • Dell'Acqua, R., Sessa, P., Peressotti, F., Mulatti, C., Navarrete, E., & Grainger, J. (2010). ERP evidence for ultra-fast semantic processing in the picture–word interference paradigm. Frontiers in Psychology, 1, 177. doi:10.3389/fpsyg.2010.00177
  • Devereux, B. J., Tyler, L. K., Geertzen, J., & Randall, B. (2013). The centre for speech language and the brain (CSLB) concept property norms. Behavior Research Methods. doi:10.3758/s13428-013-0420-4
  • Farah, M. J., & McClelland, J. L. (1991). A computational model of semantic memory impairment: Modality specificity and emergent category specificity. Journal of Experimental Psychology: General, 120, 339–357. doi:10.1037/0096-3445.120.4.339
  • Fei-Fei, L., Iyer, A., Koch, C., & Perona, P. (2007). What do we perceive in a glance of a real-world scene? Journal of Vision, 7(1), 10. doi:10.1167/7.1.10
  • Garrard, P., Lambon Ralph, M. A., Hodges, J. R., & Patterson, K. (2001). Prototypicality, distinctiveness, and intercorrelation: Analyses of the semantic attributes of living and nonliving concepts. Cognitive Neuropsychology, 18, 125–174. doi:10.1080/02643290125857
  • Ghuman, A. S., Bar, M., Dobbins, I. G., & Schnyer, D. M. (2008). The effects of priming on frontal-temporal communication. Proceedings of the National Academy of Sciences , 105, 8405–8409. doi:10.1073/pnas.0710674105
  • Gonnerman, L. M., Andersen, E. S., Devlin, J. T., Kempler, D., & Seidenberg, M. S. (1997). Double dissociation of semantic categories in Alzheimer's disease. Brain and Language, 57, 254–279. doi:10.1006/brln.1997.1752
  • Hauk, O., Davis, M. H., Ford, M., Pulvermüller, F., & Marslen-Wilson, W. D. (2006). The time course of visual word recognition as revealed by linear regression analysis of ERP data. Neuroimage, 30, 1383–1400. doi:10.1016/j.neuroimage.2005.11.048
  • Hauk, O., Patterson, K., Woollams, A., Cooper-Pye, E., Pulvermuller, F., & Rogers, T. T. (2007). How the camel lost its hump: The impact of object typicality on event-related potential signals in object decision. Journal of Cognitive Neuroscience, 19(8), 1338–1353.
  • Hegdé, J. (2008). Time course of visual perception: coarse-to-fine processing and beyond. Prog Neurobiol, 84, 405–439.
  • Hochstein, S., & Ahissar, M. (2002). View from the top. Neuron, 36, 791–804. doi:10.1016/S0896-6273(02)01091-7
  • Humphreys, G. W., & Forde, E. M. E. (2001). Hierarchies, similarity, and interactivity in object recognition: Category-specific neuropsychological deficits. Behavioral and Brain Sciences, 24, 453–509.
  • Humphreys, G. W., Lamote, C., & Lloyd-Jones, T. J. (1995). An interactive activation approach to object processing: Effects of structural similarity, name frequency, and task in normality and pathology. Memory, 3, 535–586. doi:10.1080/09658219508253164
  • Humphreys, G. W., Riddoch, M. J., & Quinlan, P. T. (1988). Cascade processes in picture identification. Cognitive Neuropsychology, 5(1), 67– 104. doi:10.1080/02643298808252927
  • Indefrey, P., & Levelt, W. J. M. (2004). The spatial and temporal signatures of word production components. Cognition, 92(1–2), 101–144. doi:10.1016/j.cognition.2002.06.001
  • Isik, L., Meyers, E. M., Leibo, J. Z., & Poggio, T. (2014). The dynamics of invariant object recognition in the human visual system. Journal of Neurophysiology, 111(1), 91–102. doi:10.1152/jn.00394.2013
  • Kirchner, H., & Thorpe, S. J. (2006). Ultra-rapid object detection with saccadic eye movements: Visual processing speed revisited. Vision Research, 46, 1762–1776. doi:10.1016/j.visres.2005.10.002
  • Kivisaari, S. L., Tyler, L. K., Monsch, A. U., & Taylor, K. I. (2012). Medial perirhinal cortex disambiguates confusable objects. Brain, 135, 3757–3769. doi:10.1093/brain/aws277
  • Kutas, M., & Federmeier, K. D. (2011). Thirty years and counting: Finding meaning in the N400 component of the event-related brain potential (ERP). Annual Review of Psychology, 62, 621–647. doi:10.1146/annurev.psych.093008.131123
  • Lamme, V. A. F., & Roelfsema, P. R. (2000). The distinct modes of vision offered by feedforward and recurrent processing. Trends in Neurosciences, 23, 571–579. doi:10.1016/S0166-2236(00)01657-X
  • Large, M.-E., Kiss, I., & McMullen, P. A. (2004). Electrophysiological correlates of object categorization: Back to basics. Cognitive Brain Research, 20, 415–426. doi:10.1016/j.cogbrainres.2004.03.013
  • Levelt, W. J. M., Praamstra, P., Meyer, A. S., Helenius, P ., & Salmelin, R. (1998). An MEG study of picture naming. Journal of Cognitive Neuroscience, 10, 553–567. doi:10.1006/jmla.1995.1014
  • Liu, H., Agam, Y., Madsen, J. R., & Kreiman, G. (2009). Timing, timing, timing: Fast decoding of object information from intracranial field potentials in human visual cortex. Neuron, 62, 281–290. doi:10.1016/j.neuron.2009.02.025
  • Low, A., Bentin, S., Rockstroh, B., Silberman, Y., Gomolla, A., Cohen, R., & Elbert T. (2003). Semantic categorization in the human brain: Spatiotemporal dynamics revealed by magnetoencephalography. Psychological Science, 14, 367–372. doi:10.1111/1467-9280.24451
  • Macé, M. J.-M., Joubert, O. R., Nespoulous, J.-L., Fabre-Thorpe, M., & Herzog, M. H. (2009). The time-course of visual categorizations: You spot the animal faster than the bird. PLoS ONE, 4(6), e5927. doi:10.1371/journal.pone.0005927.g005
  • Mack, M. L., Gauthier, I., Sadr, J., & Palmeri, T. J. (2008). Object detection and basic-level categorization: Sometimes you know it is there before you know what it is. Psychonomic Bulletin and Review, 15(1), 28–35. doi:10.3758/PBR.15.1.28
  • Mack, M. L., & Palmeri, T. J. (2011). The timing of visual object categorization. Frontiers in Psychology, 2, 165. doi:10.3389/fpsyg.2011.00165
  • Mahon, B. Z., & Caramazza, A. (2009). Concepts and categories: A cognitive neuropsychological perspective. Annual Review of Psychology, 60(1), 27–51. doi:10.1146/annurev.psych.60.110707.163532
  • Martinovic, J., Gruber, T., Müller, M. M., & Lauwereyns, J. (2008). Coding of visual object features and feature conjunctions in the human brain. PLoS One, 3(11), e3781. doi:10.1371/journal.pone.0003781.t001
  • McRae, K., Cree, G. S., Seidenberg, M. S., & McNorgan, C. (2005). Semantic feature production norms for a large set of living and nonliving things. Behavior Research Methods, 37, 547–559. doi:10.3758/BF03192726
  • McRae, K., de Sa, V. R., & Seidenberg, M. S. (1997). On the nature and scope of featural representations of word meaning. Journal of Experimental Psychology: General, 126(2), 99–130. doi:10.1037/0096-3445.126.2.99
  • Meyer, K., & Damasio, A. (2009). Convergence and divergence in a neural architecture for recognition and memory. Trends in Neurosciences, 32, 376–382. doi:10.1016/j.tins.2009.04.002
  • Mion, M., Patterson, K., Acosta-Cabronero, J., Pengas, G., Izquierdo-Garcia, D., Hong, Y. T., … Nestor, P. J. (2010). What the left and right anterior fusiform gyri tell us about semantic memory. Brain, 133, 3256–3268. doi:10.1093/brain/awq272
  • Moss, H. E., Rodd, J. M., Stamatakis, E. A., Bright, P., & Tyler, L. K. ( 2004). Anteromedial temporal cortex supports fine-grained differentiation among objects. Cerebral Cortex, 15, 616–627. doi:10.1093/cercor/bhh163
  • Moss, H. E., Tyler, L. K., & Taylor, K. I. (2007). Conceptual structure. In G. Gaskell (Ed.), Oxford handbook of psycholinguistics. Oxford: University Press.
  • Mummery, C. J., Patterson, K., Wise, R. J. S., Vandenbergh, R., Price, C. J., & Hodges, J. R. (1999). Disrupted temporal lobe connections in semantic dementia. Brain, 122(1), 61–73. doi:10.1093/brain/122.1.61
  • Murphy, B., Poesio, M., Bovolo, F., Bruzzone, L., Dalponte, M., & Lakany, H. (2011). EEG decoding of semantic category reveals distributed representations for single concepts. Brain and Language, 117(1), 12–22. doi:10.1016/j.bandl.2010.09.013
  • Murray, E. A., & Richmond, B. J. (2001). Role of perirhinal cortex in object perception, memory, and associations. Current Opinion in Neurobiology, 11, 188–193. doi:10.1016/S0959-4388(00)00195-1
  • Ramkumar, P., Jas, M., Pannasch, S., Hari, R., & Parkkonen, L. (2013). Feature-specific information processing precedes concerted activation in human visual cortex. Journal of Neuroscience, 33, 7691–7699. doi:10.1523/JNEUROSCI.3905-12.2013
  • Randall, B., Moss, H. E., Rodd, J. M., Greer, M., & Tyler, L. K. (2004). Distinctiveness and correlation in conceptual structure: Behavioral and computational studies. Journal of Experimental Psychology: Learning, Memory, and Cognition, 30, 393–406.
  • Riès, S., Janssen, N., Burle, B., & Alario, F. X. (2013). Response-locked brain dynamics of word production. PLoS ONE, 8(3), e58197.
  • Riesenhuber, M., & Poggio, T. (1999). Hierarchical models of object recognition. Nature, 2, 1019–1025.
  • Rogers, T. T., & McClelland, J. L. (2004). Semantic cognition: A parallel distributed approach. Cambridge, MA: MIT press.
  • Rogers, T. T., & Patterson, K. (2007). Object categorization: Reversals and explanations of the basic-level advantage. Journal of Experimental Psychology: General, 136, 451–469. doi:10.1037/0096-3445.136.3.451
  • Rosch, E., Mervis, C. B., Gray, W. D., Johnson, D. M., & Boyes-Braem, P. (1976). Basic objects in natural categories. Cognitive Psychology, 8, 382–439. doi:10.1016/0010-0285(76)90013-X
  • Schendan, H. E., & Ganis, G. (2012). Electrophysiological potentials reveal cortical mechanisms for mental imagery, mental simulation, and grounded (embodied) cognition. Frontiers in Psychology, 3(329), doi:10.3389/fpsyg.2012.00329.
  • Schendan, H. E., Ganis, G., & Kutas, M. (1998). Neurophysiological evidence for visual perceptual categorization of words and faces within 150 ms. Psychophysiology, 35, 240–251. doi:10.1111/1469-8986.3530240
  • Schendan, H. E., & Maher, S. M. (2009). Object knowledge during entry-level categorization is activated and modified by implicit memory after 200 ms. NeuroImage, 44, 1423–1438. doi:10.1016/j.neuroimage.2008.09.061
  • Schendan, H. E., & Stern, C. E. (2008). Where vision meets memory: Prefrontal-posterior networks for visual object constancy during categorization and recognition. Cerebral Cortex, 18, 1695–1711. doi:10.1093/cercor/bhm197
  • Scholte, H. S., Ghebreab, S., Waldorp, L., Smeulders, A. W., & Lamme, V. A. (2009). Brain responses strongly correlate with Weibull image statistics when processing natural images. Journal of Vision, 9(4), 29. doi:10.1167/9.4.29
  • Schyns, P. G., Petro, L. S., & Smith, M. L. (2007). Dynamics of visual information integration in the brain for categorizing facial expressions. Current Biology, 17, 1580–1585. doi:10.1016/j.cub.2007.08.048
  • Serre, T., Wolf, L., Bileschi, S., Riesenhuber, M., & Poggio, T. (2007). Robust object recognition with cortex-like mechanisms. IEEE Transactions on Pattern Analysis and Machine Intelligence, 29 411–426. doi:10.1109/TPAMI.2007.56
  • Simanova, I., van Gerven, M., Oostenveld, R., & Hagoort, P. (2010). Identifying object categories from event-related EEG: Towards decoding of conceptual representations. PLoS ONE, 5(12), e14465. doi:10.1371/journal.pone.0014465.s007
  • Simmons, W. K., & Barsalou, L. W. (2003). The similarity-in-topography principle: Reconciling theories of conceptual deficits. Cognitive Neuropsychology, 20, 451–486. doi:10.1080/02643290342000032
  • Sugase, Y., Yamane, S., Ueno, S., & Kawano, K. (1999). Global and fine information coded by single neurons in the temporal visual cortex. Nature, 400, 869–873. doi:10.1038/23703
  • Tarkiainen, A., Cornelissen, P. L., & Salmelin, R. (2002). Dynamics of visual feature analysis and object-level processing in face versus letter-string perception. Brain, 125( 5), 1125–1136. doi:10.1093/brain/awf112
  • Taylor, K. I., Devereux, B. J., Acres, K., Randall, B., & Tyler, L. K. (2012). Contrasting effects of feature-based statistics on the categorisation and identification of visual objects. Cognition, 122, 363–374. doi:10.1016/j.cognition.2011.11.001
  • Taylor, K. I., Devereux, B. J., & Tyler, L. K. (2011). Conceptual structure: Towards an integrated neurocognitive account. Language and Cognitive Processes, 26, 1368–1401. doi:10.1080/01690965.2011.568227
  • Taylor, K. I., Moss, H. E., Stamatakis, E. A., & Tyler, L. K. (2006). Binding crossmodal object features in perirhinal cortex. Proceedings of the National Academy of Sciences, 103, 8239–8244. doi:10.1073/pnas.0509704103
  • Taylor, K. I., Salamoura, A., Randall, B., Moss, H., & Tyler, L. K. (2008). Clarifying the nature of the distinctiveness by domain interaction in conceptual structure: comment on Cree, McNorgan, and McRae (2006). Journal of Experimental Psychology: Learning, Memory, and Cognition, 34, 719–725.
  • Taylor, K. I., Stamatakis, E. A., & Tyler, L. K. (2009). Crossmodal integration of object features: Voxel-based correlations in brain-damaged patients. Brain, 132, 671–683. doi:10.1093/brain/awn361
  • Thorpe, S., Fize, D., & Marlot, C. (1996). Speed of processing in the human visual system. Nature, 381, 520–522. doi:10.1038/381520a0
  • Tyler, L. K., Chiu, S., Zhuang, J., Randall, B., Devereux, B. J., Wright, P., … Taylor K. I. (2013). Objects and categories: Feature statistics and object processing in the ventral stream. Journal of Cognitive Neuroscience, 25, 1723–1735.
  • Tyler, L. K., & Moss, H. E. (2001). Towards a distributed account of conceptual knowledge. Trends in Cognitive Sciences, 5, 244–252. doi:10.1016/S1364-6613(00)01651-X
  • Tyler, L. K., Stamatakis, E. A., Bright, P., Acres, K., Abdallah, S., Rodd, J. M., & Moss H. E. (2004). Processing objects at different levels of specificity. Journal of Cognitive Neuroscience, 16, 351–362.
  • Urooj, U., Cornelissen, P., Simpson, M., Wheat, K. L., Woods, W., Barca, L., … Ellis A. W. (2014). Interactions between visual and semantic processing during object recognition revealed by modulatory effects of age of acquisition. Neuroimage, 87, 252–264. doi:10.1016/j.neuroimage.2013.10.058
  • VanRullen, R., & Thorpe, S. J. (2001). The time course of visual processing: From early perception to decision-making. Journal of Cognitive Neuroscience, 13, 454–461. doi:10.1046/j.1460-9568.1999.00531.x
  • Vigliocco, G., Vison, D. P., Lewis, W., & Garrett, M. F. (2004). Representing the meaning of object and action words: The featural and unitary semantic space hypothesis. Cognitive Psychology, 48, 422–488.