544
Views
14
CrossRef citations to date
0
Altmetric
Commentaries

The use of resting state data in an integrative approach to studying neurocognitive ageing – commentary on Campbell and Schacter (2016)

&
Pages 684-691 | Received 10 Oct 2016, Accepted 12 Oct 2016, Published online: 04 Nov 2016

References

  • Balsters, J. H., O’Connell, R. G., Galli, A., Nolan, H., Greco, E., Kilcullen, S. M., … Robertson, I. H. (2013). Changes in resting connectivity with age: A simultaneous electroencephalogram and functional magnetic resonance imaging investigation. Neurobiology of Aging, 34(9), 2194–2207. doi:10.1016/j.neurobiolaging.2013.03.004
  • Baltes, P. B., & Lindenberger, U. (1997). Emergence of a powerful connection between sensory and cognitive functions across the adult life span: A new window to the study of cognitive aging? Psychology and Aging, 12(1), 12–21. doi:10.1037/0882-7974.12.1.12
  • Betzel, R. F., & Bassett, D. S. (2016). Multi-scale brain networks. arVix Preprint, arXiv:1608.08828.
  • Betzel, R. F., Byrge, L., He, Y., Goñi, J., Zuo, X.-N., & Sporns, O. (2014). Changes in structural and functional connectivity among resting-state networks across the human lifespan. NeuroImage, 102(2), 345–357. doi:10.1016/j.neuroimage.2014.07.067
  • Birn, R. M., Diamond, J. B., Smith, M. A., & Bandettini, P. A. (2006). Separating respiratory-variation-related fluctuations from neuronal-activity-related fluctuations in fMRI. NeuroImage, 31(4), 1536–1548. doi:10.1016/j.neuroimage.2006.02.048
  • Birn, R. M., Murphy, K., Handwerker, D. A., & Bandettini, P. A. (2009). NeuroImage fMRI in the presence of task-correlated breathing variations. NeuroImage, 47(3), 1092–1104. doi:10.1016/j.neuroimage.2009.05.030
  • Biswal, B. B., Mennes, M., Zuo, X.-N.-N., Gohel, S., Kelly, C., Smith, S. M., … Milham, M. P. (2010). Toward discovery science of human brain function. Proceedings of the National Academy of Sciences, 107(10), 4734–4739. doi:10.1073/pnas.0911855107
  • Blumen, H. M., Gazes, Y., Habeck, C., Kumar, A., Steffener, J., Rakitin, C., & Stern, Y. (2012). Neural networks associated with the speed-accuracy tradeoff: Evidence from the response signal method. Behavioural Brain Research, 224(2), 397–402. doi:10.1016/j.bbr.2011.06.004.Neural
  • Bogacz, R., Wagenmakers, E., Forstmann, B. U., & Nieuwenhuis, S. (2010). The neural basis of the speed – accuracy tradeoff. Trends in Neurosciences, 33(1), 10–16. doi:10.1016/j.tins.2009.09.002
  • van den Brink, R. L., Pfeffer, T., Warren, C. M., Murphy, P. R., Tona, K., van der Wee, N. J. A., … Nieuwenhuis, S. (2016). Catecholaminergic neuromodulation shapes intrinsic MRI functional connectivity in the human brain. Journal of Neuroscience, 36(30), 7865–7876. doi:10.1523/JNEUROSCI.0744-16.2016
  • Burzynska, A. Z., Garrett, D. D., Preuschhof, C., Nagel, I. E., Li, S.-C., Bäckman, L., … Lindenberger, U. (2013). A scaffold for efficiency in the human brain. The Journal of Neuroscience, 33(43), 17150–17159. doi:10.1523/JNEUROSCI.1426-13.2013
  • Cabeza, R. (2002). Hemispheric asymmetry reduction in older adults: The HAROLD model. Psychology and Aging, 17(1), 85–100. doi:10.1037//0882-7974.17.1.85
  • Campbell, K. L., & Schacter, D. L. (2016). Ageing and the resting state: Is cognition obsolete? Journal Language, Cognition and Neuroscience, Advance online publication. doi:10.1080/23273798.2016.1227858
  • Campbell, K. L., Shafto, M. A., Wright, P., Tsvetanov, K. A., Geerligs, L., Cusack, R., & Tyler, L. K. (2015). Neurobiology of Aging Idiosyncratic responding during movie-watching predicted by age differences in attentional control. Neurobiology of Aging, 36(11), 3045–3055. doi:10.1016/j.neurobiolaging.2015.07.028
  • Chan, M. Y., Park, D. C., Savalia, N. K., Petersen, S. E., & Wig, G. S. (2014). Decreased segregation of brain systems across the healthy adult lifespan. Proceedings of the National Academy of Sciences, 111(46), E4997–E5006. doi:10.1073/pnas.1415122111
  • Chang, C., Metzger, C. D., Glover, G. H., Duyn, J. H., Heinze, H.-J., & Walter, M. (2013). Association between heart rate variability and fluctuations in resting-state functional connectivity. NeuroImage, 68, 93–104. doi:10.1016/j.neuroimage.2012.11.038
  • Cicchetti, D., & Blender, J. A. (2006). A multiple-levels-of-analysis perspective on resilience: Implications for the developing brain, neural plasticity, and preventive interventions. Annals of the New York Academy of Sciences, 1094(1), 248–258. doi:10.1196/annals.1376.029
  • Cole, M. W., Bassett, D. S., Power, J. D., Braver, T. S., & Petersen, S. E. (2014). Intrinsic and task-evoked network architectures of the human brain. Neuron, 83(1), 238–251. doi:10.1016/j.neuron.2014.05.014
  • Cole, M. W., Ito, T., Bassett, D. S., & Schultz, D. H. (2016). Activity flow over resting-state networks shapes cognitive task activations. Nature Neuroscience, Advance online publication. doi:10.1038/nn.4406
  • Cole, M. W., Reynolds, J. R., Power, J. D., Repovs, G., Anticevic, A., & Braver, T. S. (2013). Multi-task connectivity reveals flexible hubs for adaptive task control. Nature Neuroscience, 16(9), 1348–1355. doi:10.1038/nn.3470
  • Davis, S. W., Dennis, N. A., Buchler, N. G., White, L. E., Madden, D. J., & Cabeza, R. (2009). Assessing the effects of age on long white matter tracts using diffusion tensor tractography. NeuroImage, 46(2), 530–541. doi:10.1016/j.neuroimage.2009.01.068
  • Davis, S. W., Dennis, N. A., Daselaar, S. M., Fleck, M. S., & Cabeza, R. (2008). Qué PASA? The posterior-anterior shift in aging. Cerebral Cortex, 18(5), 1201–1209. doi:10.1093/cercor/bhm155
  • Davis, S. W., Zhuang, J., Wright, P., & Tyler, L. K. (2014). Age-related sensitivity to task-related modulation of language-processing networks. Neuropsychologia, 63, 107–115. doi:10.1016/j.neuropsychologia.2014.08.017
  • Debette, S., Seshadri, S., Beiser, A., Au, R., Himali, J. J., Palumbo, C., … DeCarli, C. (2011). Midlife vascular risk factor exposure accelerates structural brain aging and cognitive decline. Neurology, 77(5), 461–468. doi:10.1212/WNL.0b013e318227b227
  • Finn, E. S., Shen, X., Scheinost, D., Rosenberg, M. D., Huang, J., Chun, M. M., … Constable, R. T. (2015). Functional connectome fingerprinting: Identifying individuals using patterns of brain connectivity. Nature Publishing Group, 18(11), 1664–1671. doi:10.1038/nn.4135
  • Forstmann, B. U., Tittgemeyer, M., Wagenmakers, E.-J., Derrfuss, J., Imperati, D., & Brown, S. (2011). The speed-accuracy tradeoff in the elderly brain: A structural model-based approach. Journal of Neuroscience, 31(47), 17242–17249. doi:10.1523/JNEUROSCI.0309-11.2011
  • de Frias, C. M., Lövdén, M., Lindenberger, U., & Nilsson, L.-G. (2007). Revisiting the dedifferentiation hypothesis with longitudinal multi-cohort data. Intelligence, 35(4), 381–392. doi:10.1016/j.intell.2006.07.011
  • Friston, K. J., Kahan, J., Biswal, B., & Razi, A. (2014). A DCM for resting state fMRI. NeuroImage, 94, 396–407. doi:10.1016/j.neuroimage.2013.12.009
  • Gajewski, P. D., & Falkenstein, M. (2016). Physical activity and neurocognitive functioning in aging – a condensed updated review. European Review of Aging and Physical Activity, 13(1), 63. doi:10.1186/s11556-016-0161-3
  • Gallen, C. L., Turner, G. R., Adnan, A., & Esposito, M. D. (2016). Reconfiguration of brain network architecture to support executive control in aging. Neurobiology of Aging, 44, 42–52. doi:10.1016/j.neurobiolaging.2016.04.003
  • Gavrilescu, M., Stuart, G. W., Waites, A., Jackson, G., Svalbe, I. D., & Egan, G. F. (2004). Changes in effective connectivity models in the presence of task-correlated motion: An fMRI study. Human Brain Mapping, 21, 49–63. doi:10.1002/hbm.10149
  • Geerligs, L., Maurits, N. M., Renken, R. J., & Lorist, M. M. (2014). Reduced specificity of functional connectivity in the aging brain during task performance. Human Brain Mapping, 35(1), 319–330. doi:10.1002/hbm.22175
  • Geerligs, L., Renken, R. J., Saliasi, E., Maurits, N. M., & Lorist, M. M. (2015). A brain wide study of age-related changes in functional connectivity. Cerebral Cortex, 25(7), 1987–1999. doi:10.1093/cercor/bhu012
  • Geerligs, L., Rubinov, M., Cam-CAN, M., & Henson, R. N. (2015). State and trait components of functional connectivity: Individual differences vary with mental state. Journal of Neuroscience, 35(41), 13949–13961. doi:10.1523/JNEUROSCI.1324-15.2015
  • Geerligs, L., Saliasi, E., Renken, R. J., Maurits, N. M., & Lorist, M. M. (2014). Flexible connectivity in the aging brain revealed by task modulations. Human Brain Mapping, 35, 3788–3804. doi:10.1002/hbm.22437
  • Grady, C. (2012). The cognitive neuroscience of ageing. Nature Reviews Neuroscience, 13(7), 491–505. doi:10.1038/nrn3256
  • Grillner, S., Kozlov, A., & Kotaleski, J. H. (2005). Integrative neuroscience: Linking levels of analyses. Current Opinion in Neurobiology, 15(5), 614–621. doi:10.1016/j.conb.2005.08.017
  • Hermundstad, A. M., Bassett, D. S., Brown, K. S., Aminoff, E. M., Clewett, D., Freeman, S., … Carlson, J. M. (2013). Structural foundations of resting-state and task-based functional connectivity in the human brain. Proceedings of the National Academy of Sciences, 110(15), 6169–6174. doi:10.1073/pnas.1219562110
  • Hess, T. M., & Ennis, G. E. (2014). Assessment of adult age differences in task engagement: The utility of systolic blood pressure. Motivation and Emotion, 38(6), 844–854. doi:10.1007/s11031-014-9433-2
  • Hillenbrand, S. F., Ivry, R. B., & Schlerf, J. E. (2016). Impact of task-related changes in heart rate on estimation of hemodynamic response and model fit. NeuroImage, 132, 455–468. doi:10.1016/j.neuroimage.2016.02.068
  • Hipp, J. F., & Siegel, M. (2015). BOLD fMRI correlation reflects frequency-specific neuronal correlation. Current Biology, 25(10), 1368–1374. doi:10.1016/j.cub.2015.03.049
  • Honey, C. J., Sporns, O., Cammoun, L., Gigandet, X., Thiran, J. P., Meuli, R., & Hagmann, P. (2009). Predicting human resting-state functional connectivity from structural connectivity. Proceedings of the National Academy of Sciences, 106(6), 2035–2040. doi:10.1073/pnas.0811168106
  • Kalpouzos, G., Persson, J., & Nyberg, L. (2012). Local brain atrophy accounts for functional activity differences in normal aging. Neurobiology of Aging, 33(3), 623.e1–623.e13. doi:10.1016/j.neurobiolaging.2011.02.021
  • Kannurpatti, S. S., & Biswal, B. B. (2008). Detection and scaling of task-induced fMRI-BOLD response using resting state fluctuations. NeuroImage, 40(4), 1567–1574. doi:10.1016/j.neuroimage.2007.09.040
  • Lewis, C. M., Baldassarre, A., Committeri, G., Romani, G. L., & Corbetta, M. (2009). Learning sculpts the spontaneous activity of the resting human brain. Proceedings of the National Academy of Sciences of the United States of America, 106(41), 17558–17563. doi:10.1073/pnas.0902455106
  • Li, H.-J., Hou, X.-H., Liu, H.-H., Yue, C.-L., Lu, G.-M., & Zuo, X.-N. (2015). Putting age-related task activation into large-scale brain networks: A meta-analysis of 114 fMRI studies on healthy aging. Neuroscience & Biobehavioral Reviews, 57, 156–174. doi:10.1016/j.neubiorev.2015.08.013
  • Lindenberger, U., & Ghisletta, P. (2009). Cognitive and sensory declines in old age: Gauging the evidence for a common cause. Psychology and Aging, 24(1), 1–16. doi:10.1037/a0014986
  • Liu, T. T., Glover, G. H., Mueller, B. A., Greve, D. N., & Brown, G. G. (2012). An introduction to normalization and calibration methods in functional MRI. Psychometrika, 78(2), 308–321. doi:10.1007/s11336-012-9309-x
  • Logothetis, N. K. (2008). What we can do and what we cannot do with fMRI. Nature, 453(7197), 869–878. doi:10.1038/nature06976
  • Luo, C., Guo, Z. wei, Lai, Y. xiu, Liao, W., Liu, Q., Kendrick, K. M., … Li, H. (2012). Musical training induces functional plasticity in perceptual and motor networks: Insights from resting-state fMRI. PLoS One, 7(5), 1–10. doi:10.1371/journal.pone.0036568
  • Madden, D. J., Bennett, I. J., & Song, A. W. (2009). Cerebral white matter integrity and cognitive aging: Contributions from diffusion tensor imaging. Neuropsychology Review, 19(4), 415–435. doi:10.1007/s11065-009-9113-2
  • Mastrovito, D. (2013). Interactions between resting-state and task-evoked brain activity suggest a different approach to fMRI analysis. The Journal of Neuroscience, 33(32), 12912–12914. doi:10.1523/JNEUROSCI.2580-13.2013
  • Mennes, M., Kelly, C., Zuo, X.-N., Di Martino, A., Biswal, B. B., Castellanos, F. X., & Milham, M. P. (2010). Inter-individual differences in resting-state functional connectivity predict task-induced BOLD activity. NeuroImage, 50(4), 1690–1701. doi:10.1016/j.neuroimage.2010.01.002
  • Miller, K. L., Alfaro-Almagro, F., Bangerter, N. K., Thomas, D. L., Yacoub, E., Xu, J., … Smith, S. M. (2016). Multimodal population brain imaging in the UK Biobank prospective epidemiological study. Nature Neuroscience, Advance online publication. doi:10.1038/nn.4393
  • Morcom, A. M., & Johnson, W. (2015). Neural reorganization and compensation in aging. Journal of Cognitive Neuroscience, 1–11. doi:10.1162/jocn_a_00783
  • Muthukumaraswamy, S. D., Edden, R. A. E., Jones, D. K., Swettenham, J. B., & Singh, K. D. (2009). Resting GABA concentration predicts peak gamma frequency and fMRI amplitude in response to visual stimulation in humans. Proceedings of the National Academy of Sciences, 106(20), 8356–8361. doi:10.1073/pnas.0900728106
  • Northoff, G., Qin, P., & Nakao, T. (2010). Rest-stimulus interaction in the brain: A review. Trends in Neurosciences, 33(6), 277–284. doi:10.1016/j.tins.2010.02.006
  • Park, D. C., & Reuter-Lorenz, P. (2009). The adaptive brain: Aging and neurocognitive scaffolding. Annual Review of Psychology, 60, 173–196. doi:10.1146/annurev.psych.59.103006.093656
  • Penke, L., Maniega, S. M., Bastin, M. E., Valdés Hernández, M. C., Murray, C., Royle, N. A., … Deary, I. J. (2012). Brain white matter tract integrity as a neural foundation for general intelligence. Molecular Psychiatry, 17(10), 1026–1030. doi:10.1038/mp.2012.66
  • Power, J. D., Barnes, K. A., Snyder, A. Z., Schlaggar, B. L., & Petersen, S. E. (2012). Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion. NeuroImage, 59(3), 2142–2154. doi:10.1016/j.neuroimage.2011.10.018
  • Poznanski, R. R. (2002). Towards an integrative theory of cognition. Journal of Integrative Neuroscience, 1(2), 145–156. doi:10.1142/S0219635202000086
  • Razi, A., & Friston, K. J. (2016). The connected brain: Causality, models and intrinsic dynamics. IEEE Signal Processing Magazine, 33(3), 14–35. doi:10.1109/MSP.2015.2482121
  • Ronan, L., Alexander-Bloch, A. F., Wagstyl, K., Farooqi, S., Brayne, C., Tyler, L. K., … Fletcher, P. C. (2016). Obesity associated with increased brain age from midlife. Neurobiology of Aging, 47, 63–70. doi:10.1016/j.neurobiolaging.2016.07.010
  • Sabia, S., Elbaz, A., Dugravot, A., Head, J., Shipley, M., Hagger-Johnson, G., … Singh-Manoux, A. (2012). Impact of smoking on cognitive decline in early old age: The Whitehall II cohort study. Archives of General Psychiatry, 69(6), 627–635. doi:10.1001/archgenpsychiatry.2011.2016
  • Salami, A., Eriksson, J., Nilsson, L.-G., & Nyberg, L. (2012). Age-related white matter microstructural differences partly mediate age-related decline in processing speed but not cognition. Biochimica et Biophysica Acta (BBA) – Molecular Basis of Disease, 1822(3), 408–415. doi:10.1016/j.bbadis.2011.09.001
  • Salami, A., Pudas, S., & Nyberg, L. (2014). Elevated hippocampal resting-state connectivity underlies deficient neurocognitive function in aging. Proceedings of the National Academy of Sciences, 111(49), 17654–17659. doi:10.1073/pnas.1410233111
  • Salami, A., Rieckmann, A., Fischer, H., & Bäckman, L. (2014). A multivariate analysis of age-related differences in functional networks supporting conflict resolution. NeuroImage, 86, 150–163. doi:10.1016/j.neuroimage.2013.08.002
  • Salthouse, T. A. (2010a). Influence of age on practice effects in longitudinal neurocognitive change. Neuropsychology, 24(5), 563–572. doi:10.1037/a0019026
  • Salthouse, T. A. (2010b). Selective review of cognitive aging. Journal of the International Neuropsychological Society, 16(5), 754–760. doi:10.1017/S1355617710000706
  • Smith, S. M., Nichols, T. E., Vidaurre, D., Winkler, A. M., Behrens, T. E. J., Glasser, M. F., … Miller, K. L. (2015). A positive-negative mode of population covariation links brain connectivity, demographics and behavior. Nature Neuroscience, 18, 1565–1567. doi:10.1038/nn.4125
  • Song, J., Birn, R. M., Meier, T. B., Nair, V. A., Meyerand, M. E., & Prabhakaran, V. (2014). Age-related reorganizational changes in modularity. Brain Connectivity, 4(9), 662–676. doi:10.1089/brain.2014.0286
  • Spreng, R. N., Stevens, W. D., Viviano, J. D., & Schacter, D. L. (2016). Neurobiology of aging attenuated anticorrelation between the default and dorsal attention networks with aging: Evidence from task and rest. Neurobiology of Aging, 45, 149–160. doi:10.1016/j.neurobiolaging.2016.05.020
  • Starns, J. J., & Ratcliff, R. (2010). The effects of aging on the speed–accuracy compromise: Boundary optimality in the diffusion model. Psychology and Aging, 25(2), 377–390. doi:10.1037/a0018022
  • Stern, Y., Stern, Y., Gurland, B., & Tatemichi, T. K. (1994). Influence of education and occupation on the incidence of Alzheimer’s disease. The Journal of the American Medical Association, 271(13), 1004–1010. doi: 10.1001/jama.1994.03510370056032
  • Tavor, I., Jones, O. P., Mars, R. B., Smith, S. M., Behrens, T. E., & Jbabdi, S. (2016). Task-free MRI predicts individual differences in brain activity during task performance. 352(6282), 1773–1776. doi:10.1126/science.aad8127
  • Toro, R., Fox, P. T., & Paus, T. (2008). Functional coactivation map of the human brain. Cerebral Cortex, 18(11), 2553–2559. doi:10.1093/cercor/bhn014
  • Tsvetanov, K. A., Henson, R. N. A., Tyler, L. K., Davis, S. W., Shafto, M. A., Taylor, J. R., … Rowe, J. B. (2015). The effect of ageing on fMRI: Correction for the confounding effects of vascular reactivity evaluated by joint fMRI and MEG in 335 adults. Human Brain Mapping, 36(6), 2248–2269. doi:10.1002/hbm.22768
  • Tsvetanov, K. A., Henson, R. N. A., Tyler, L. K., Razi, A., Geerligs, L., Ham, T. E., …  Cambridge Centre for Ageing and Neuroscience. (2016). Extrinsic and intrinsic brain network connectivity maintains cognition across the lifespan despite accelerated decay of regional brain activation. 36(11), 3115–3126. doi:10.1523/JNEUROSCI.2733-15.2016
  • Voytek, B., & Knight, R. T. (2015). Dynamic network communication as a unifying neural basis for cognition, development, aging, and disease. Biological Psychiatry, 77, 1089–1097. doi:10.1016/j.biopsych.2015.04.016
  • Whalley, L. J., Deary, I. J., Appleton, C. L., & Starr, J. M. (2004). Cognitive reserve and the neurobiology of cognitive aging. Ageing Research Reviews, 3(4), 369–382. doi:10.1016/j.arr.2004.05.001
  • Wilson, R. S., Beckett, L. A., Barnes, L. L., Schneider, J. A., Bach, J., Evans, D. A., & Bennett, D. A. (2002). Individual differences in rates of change in cognitive abilities of older persons. Psychology and Aging, 17(2), 179–193. doi:10.1037/0882-7974.17.2.179
  • Zou, Q., Ross, T. J., Gu, H., Geng, X., Zuo, X. N., Hong, L. E., … Yang, Y. (2013). Intrinsic resting-state activity predicts working memory brain activation and behavioral performance. Human Brain Mapping, 34(12), 3204–3215. doi:10.1002/hbm.22136

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.