929
Views
9
CrossRef citations to date
0
Altmetric
Review Articles

Comprehending auditory speech: previous and potential contributions of functional MRI

&
Pages 829-846 | Received 25 Jan 2016, Accepted 04 Nov 2016, Published online: 09 Jan 2017

References

  • Abrams, D. A., Ryali, S., Chen, T., Balaban, E., Levitin, D. J., & Menon, V. (2013). Multivariate activation and connectivity patterns discriminate speech intelligibility in Wernicke’s, Broca’s, and Geschwind’s areas. Cerebral Cortex, 23, 1703–1714. doi:10.1093/cercor/bhs165
  • Adank, P. (2012). The neural bases of difficult speech comprehension and speech production: Two Activation Likelihood Estimation (ALE) meta-analyses. Brain and Language, 122(1), 42–54. doi:10.1016/j.neuroimage.2012.07.027
  • Agnew, Z. K., McGettigan, C., & Scott, S. K. (2011). Discriminating between auditory and motor cortical responses to speech and nonspeech mouth sounds. Journal of Cognitive Neuroscience, 23(12), 4038–4047. doi:10.1162/jocn_a_00106
  • Arsenault, J. S., & Buchsbaum, B. R. (2015). Distributed neural representations of phonological features during speech perception. Journal of Neuroscience, 35(2), 634–642. doi:10.1523/JNEUROSCI.2454-14.2015
  • Arsenault, J. S., & Buchsbaum, B. R. (2016). No evidence of somatotopic place of articulation feature mapping in motor cortex during passive speech perception. Psychonomic Bulletin & Review, 23, 1231–1240. doi:10.3758/s13423-015-0988-z
  • Bandettini, P., Wong, E. C., Hinks, R. S., Tikofsky, R. S., & Hyde, J. S. (1992). Time course EPI of human brain function during task activation. Magnetic Resonance in Medicine, 25(2), 390–397. doi:10.1002/mrm.1910250220
  • Becker, R., Reinacher, M., Freyer, F., Villringer, A., & Ritter, P. (2011). How ongoing neuronal oscillations account for evoked fMRI variability. Journal of Neuroscience, 31(30), 11016–11027. doi:10.1523/JNEUROSCI.0210-11.2011
  • Belin, P., Zatorre, R. J., Hoge, R., Evans, A. C., & Pike, B. (1999). Event-related fMRI of the auditory cortex. Neuroimage, 10(4), 417–429. doi:10.1006/nimg.1999.0480
  • Binder, J. R., Liebenthal, E., Possing, E. T., Medler, D. A., & Ward, B. D. (2004). Neural correlates of sensory and decision processes in auditory object identification. Nature Neuroscience, 7(3), 295–301. doi:10.1038/nn1198
  • Binney, R. J., Parker, G. J. M., & Lambon Ralph, M. A. (2012). Convergent connectivity and graded specialization in the rostral human temporal lobe as revealed by diffusion-weighted imaging probabilistic tractography. Journal of Cognitive Neuroscience, 24(10), 1998–2014. doi:10.1162/jocn_a_00263
  • Boemio, A., Fromm, S., Braun, A., & Poeppel, D. (2005). Hierarchical and asymmetric temporal sensitivity in human auditory cortices. Nature Neuroscience, 8(3), 389–395. doi:10.1038/nn1409
  • Bonte, M., Hausfeld, L., Scharke, W., Valente, G., & Formisano, E. (2014). Task-dependent decoding of speaker and vowel identity from auditory cortical response patterns. Journal of Neuroscience, 34(13), 4548–4557. doi:10.1523/JNEUROSCI.4339-13.2014
  • Bozic, M., Tyler, L. K., Ives, D. T., Randall, B., & Marslen-Wilson, W. D. (2010). Bihemispheric foundations for human speech comprehension. Proceedings of the National Academy of Sciences, 107(40), 17439–17444. doi:10.1073/pnas.1000531107
  • Braga, R. M., Wilson, L. R., Sharp, D. J., Wise, R. J. S., & Leech, R. (2013). Separable networks for top-down attention to auditory non-spatial and visuospatial modalities. NeuroImage, 74, 77–86. doi:10.1016/j.neuroimage.2013.02.023
  • Brownsett, S. L. E., Warren, J. E., Geranmayeh, F., Woodhead, Z., Leech, R., & Wise, R. J. S. (2014). Cognitive control and its impact on recovery from aphasic stroke. Brain, 137(1), 242–254. doi:10.1093/brain/awt289
  • Calhoun, V. D., Adali, T., Pearlson, G. D., & Pekar, J. J. (2001). A method for making group inferences from functional MRI data using independent component analysis. Human Brain Mapping, 14(3), 140–151. doi:10.1002/hbm.1048
  • Caplan, D. (2009). Experimental design and interpretation of functional neuroimaging studies of cognitive processes. Human Brain Mapping, 30(1), 59–77. doi:10.1002/hbm.20489
  • Carey, D., & McGettigan, C. (2016). Magnetic resonance imaging of the brain and vocal tract: applications to the study of speech production and language learning. Neuropsychologia, 1–11. doi:10.1016/j.neuropsychologia.2016.06.003
  • Chang, E. F., Rieger, J. W., Johnson, K., Berger, M. S., Barbaro, N. M., & Knight, R. T. (2010). Categorical speech representation in human superior temporal gyrus. Nature Neuroscience, 13(11), 1428–1432. doi:10.1038/nn.2641
  • Cichy, R. M., Pantazis, D., & Oliva, A. (2016). Similarity-based fusion of MEG and fMRI reveals spatio-temporal dynamics in human cortex during visual object recognition. Cerebral Cortex, 26(8), 3563–3579. doi:10.1093/cercor/bhw135
  • Cloutman, L. L., Binney, R. J., Drakesmith, M., Parker, G. J. M., & Lambon Ralph, M. A. (2012). The variation of function across the human insula mirrors its patterns of structural connectivity: Evidence from in vivo probabilistic tractography. NeuroImage, 59(4), 3514–3521. doi:10.1016/j.neuroimage.2011.11.016
  • Cloutman, L. L., Binney, R. J., Morris, D. M., Parker, G. J. M., & Lambon Ralph, M. A. (2013). Using in vivo probabilistic tractography to reveal two segregated dorsal “language-cognitive” pathways in the human brain. Brain and Language, 127(2), 230–240. doi:10.1016/j.bandl.2013.06.005
  • Corbetta, M., & Shulman, G. L. (2011). Spatial neglect and attention networks. Annual Review of Neuroscience, 34(1), 569–599. doi:10.1146/annurev-neuro-061010-113731
  • Correia, J., Formisano, E., Valente, G., Hausfeld, L., Jansma, B., & Bonte, M. (2014). Brain-based translation: fMRI decoding of spoken words in bilinguals reveals language-independent semantic representations in anterior temporal lobe. Journal of Neuroscience, 34(1), 332–338. doi:10.1523/JNEUROSCI.1302-13.2014
  • Correia, J. M., Jansma, B. M. B., & Bonte, M. (2015). Decoding articulatory features from fMRI responses in dorsal speech regions. Journal of Neuroscience, 35(45), 15015–15025. doi:10.1523/JNEUROSCI.0977-15.2015
  • Crinion, J. T., & Leff, A. P. (2015). Using functional imaging to understand therapeutic effects in poststroke aphasia. Current Opinion in Neurology, 28(4), 330–337. doi:10.1097/WCO.0000000000000217
  • Dale, A. M. (1999). Optimal experimental design for event-related fMRI. Human Brain Mapping, 8, 109–114. doi:10.1002/(SICI)1097-0193(1999)8:2/3<109::AID-HBM7>3.3.CO;2-N
  • Davis, M., Ford, M., Kherif, F., & Johnsrude, I. (2011). Does semantic context benefit speech understanding through “top down” processes? Evidence from time-resolved sparse fMRI. Journal of Cognitive Neuroscience23(12), 3914–3932. doi:10.1162/jocn_a_00084
  • Davis, M. H., & Johnsrude, I. S. (2003). Hierarchical processing in spoken language comprehension. Journal of Neuroscience, 23(8), 3423–3431.
  • De Martino, F., Moerel, M., Ugurbil, K., Formisano, E., & Yacoub, E. (2015). Less noise, more activation: Multiband acquisition schemes for auditory functional MRI. Magnetic Resonance in Medicine, 74(2), 462–467. doi:10.1002/mrm.25408
  • Devlin, J. T., Russell, R. P., Davis, M. H., Price, C. J., Wilson, J., Moss, H. E., … Tyler, L. K. (2000). Susceptibility-induced loss of signal: Comparing PET and fMRI on a semantic task. Neuroimage, 11(6), 589–600. doi:10.1006/nimg.2000.0595
  • Dosenbach, N. U. F., Fair, D. A., Cohen, A. L., Schlaggar, B. L., & Petersen, S. E. (2008). A dual-networks architecture of top-down control. Trends in Cognitive Sciences, 12(3), 99–105. doi:10.1016/j.tics.2008.01.001
  • Du, Y., Buchsbaum, B. R., Grady, C. L., & Alain, C. (2014). Noise differentially impacts phoneme representations in the auditory and speech motor systems. Proceedings of the National Academy of Sciences, 111(19), 7126–7131. doi:10.1073/pnas.1318738111
  • Edmister, W. B., Talavage, T. M., Ledden, P. J., & Weisskoff, R. M. (1999). Improved auditory cortex imaging using clustered volume acquisitions. Human Brain Mapping, 7(2), 89–97. doi: 10.1002/(SICI)1097-0193(1999)7:2<89::AID-HBM2>3.0.CO;2-N
  • Eisner, F., McGettigan, C., Faulkner, A., Rosen, S., & Scott, S. K. (2010). Inferior frontal gyrus activation predicts individual differences in perceptual learning of cochlear-implant simulations. Journal of Neuroscience, 30(21), 7179–7186. doi:10.1523/JNEUROSCI.4040-09.2010
  • Erb, J., Henry, M. J., Eisner, F., & Obleser, J. (2013). The brain dynamics of rapid perceptual adaptation to adverse listening conditions. Journal of Neuroscience, 33(26), 10688–10697. doi:10.1523/JNEUROSCI.4596-12.2013
  • Erb, J., & Obleser, J. (2013). Upregulation of cognitive control networks in older adults’ speech comprehension. Frontiers in Systems Neuroscience, 7, 116. doi:10.3389/fnsys.2013.00116
  • Evans, S., & Davis, M. H. (2015). Hierarchical organization of auditory and motor representations in speech perception: Evidence from searchlight similarity analysis. Cerebral Cortex, 25, 4772–4788. doi:10.1093/cercor/bhv136
  • Evans, S., Kyong, J. S., Rosen, S., Golestani, N., Warren, J. E., McGettigan, C., … Scott, S. K. (2014). The pathways for intelligible speech: Multivariate and univariate perspectives. Cerebral Cortex, 24, 2350–2361. doi:10.1093/cercor/bht083
  • Evans, S., Mcgettigan, C., Agnew, Z. K., Rosen, S., & Scott, S. K. (2016). Getting the cocktail party started: Masking effects in speech perception. Journal of Cognitive Neuroscience, 28(3), 483–500. doi:10.1162/jocn_a_00913
  • Fitch, W. T. (2014). Toward a computational framework for cognitive biology: Unifying approaches from cognitive neuroscience and comparative cognition. Physics of Life Reviews, 11(3), 329–364. doi:10.1016/j.plrev.2014.04.005
  • Formisano, E., De Martino, F., Bonte, M., & Goebel, R. (2008). “Who” is saying “what”? brain-based decoding of human voice and speech. Science, 322, 970–973. doi:10.1126/science.1164318
  • Formisano, E., Kim, D. S., Di Salle, F., van de Moortele, P. F., Ugurbil, K., & Goebel, R. (2003). Mirror-symmetric tonotopic maps in human primary auditory cortex. Neuron, 40(4), 859–869. doi: 10.1016/S0896-6273(03)00669-X
  • Foster, J. R., Hall, D., Summerfield, a. Q., Palmer, a. R., & Bowtell, R. W. (2000). Sound-level measurements and calculations of safe noise dosage during EPI at 3T. Journal of Magnetic Resonance Imaging, 12(1), 157–163. doi:10.1002/1522-2586(200007)12:1<157::aid-jmri17>3.0.co;2-m
  • Friederici, A. D., Kotz, S. A., Scott, S. K., & Obleser, J. (2010). Disentangling syntax and intelligibility in auditory language comprehension. Human Brain Mapping, 31(3), 448–457. doi:10.1002/hbm.20878
  • Friston, K. J., Price, C. J., Fletcher, P., Moore, C., Frackowiak, R. S., & Dolan, R. J. (1996). The trouble with cognitive subtraction. NeuroImage, 4(2), 97–104. doi:10.1006/nimg.1996.0033
  • Friston, K. J., Zarahn, E., Josephs, O., Henson, R. N., & Dale, a. M. (1999). Stochastic designs in event-related fMRI. NeuroImage, 10(5), 607–619. doi:10.1006/nimg.1999.0498
  • Friston, K., Moran, R., & Seth, A. K. (2013). Analysing connectivity with Granger causality and dynamic causal modelling. Current Opinion in Neurobiology, 23(2), 172–178. doi:10.1016/j.conb.2012.11.010
  • Gagnepain, P., Henson, R. N., & Davis, M. H. (2012). Temporal predictive codes for spoken words in auditory cortex. Current Biology, 22(7), 615–621. doi:10.1016/j.cub.2012.02.015
  • Ge, J., Peng, G., Lyu, B., Wang, Y., Zhuo, Y., Niu, Z., … Gao, J.-H. (2015). Cross-language differences in the brain network subserving intelligible speech. Proceedings of the National Academy of Sciences, 112(10), 2972–2977. doi:10.1073/pnas.1416000112
  • Geranmayeh, F., Brownsett, S. L. E., & Wise, R. J. S. (2014). Task-induced brain activity in aphasic stroke patients: What is driving recovery? Brain, 137(Pt 10), 2632–2648. doi:10.1093/brain/awu163
  • Geranmayeh, F., Wise, R. J. S., Mehta, A., & Leech, R. (2014). Overlapping networks engaged during spoken language production and its cognitive control. Journal of Neuroscience, 34(26), 8728–8740. doi:10.1523/JNEUROSCI.0428-14.2014
  • Giraud, A.-L., & Poeppel, D. (2012). Cortical oscillations and speech processing: Emerging computational principles and operations. Nature Neuroscience, 15(4), 511–517. doi:10.1038/nn.3063
  • Guediche, S., Holt, L. L., Laurent, P., Lim, S.-J., & Fiez, J. (2015). Evidence for cerebellar contributions to adaptive plasticity in speech perception. Cerebral Cortex, 25(7), 1867–1877. doi:10.1093/cercor/bht428
  • Hackett, T. A. (2011). Information flow in the auditory cortical network. Hearing Research, 271, 133–146. doi:10.1016/j.heares.2010.01.011
  • Halai, A. D., Welbourne, S. R., Embleton, K., & Parkes, L. M. (2014). A comparison of dual gradient-echo and spin-echo fMRI of the inferior temporal lobe. Human Brain Mapping, 35(8), 4118–4128. doi:10.1002/hbm.22463
  • Halai, A., Parkes, L. M., & Welbourne, S. (2015). Dual-echo fMRI can detect activations in inferior temporal lobe during intelligible speech comprehension. NeuroImage, 122, 214–221. doi:10.1016/j.neuroimage.2015.05.067
  • Hall, D. A., Chambers, J., Akeroyd, M. A., Foster, J. R., Coxon, R., & Palmer, A. R. (2009). Acoustic, psychophysical, and neuroimaging measurements of the effectiveness of active cancellation during auditory functional magnetic resonance imaging. Journal of the Acoustical Society of America, 125(1), 347–359. doi:10.1121/1.3021437
  • Hall, D. A., Haggard, M. P., Akeroyd, M. A., Palmer, A. R., Summerfield, A. Q., Elliott, M. R., … Bowtell, R. W. (1999). “Sparse” temporal sampling in auditory fMRI. Human Brain Mapping, 7(3), 213–223. doi: 10.1002/(SICI)1097-0193(1999)7:3<213::AID-HBM5>3.0.CO;2-N
  • Hanslmayr, S., Volberg, G., Wimber, M., Raabe, M., Greenlee, M. W., & Bauml, K.-H. T. (2011). The relationship between brain oscillations and BOLD signal during memory formation: A combined EEG-fMRI study. Journal of Neuroscience, 31(44), 15674–15680. doi:10.1523/JNEUROSCI.3140-11.2011
  • Haynes, J. D., & Rees, G. (2006). Decoding mental states from brain activity in humans. Nature Reviews Neuroscience, 7(7), 523–534. doi:10.1038/nrn1931
  • Herrmann, B., Obleser, J., Kalberlah, C., Haynes, J. D., & Friederici, A. D. (2012). Dissociable neural imprints of perception and grammar in auditory functional imaging. Human Brain Mapping, 33(3), 584–595. doi:10.1002/hbm.21235
  • Hervais-Adelman, A. G., Carlyon, R. P., Johnsrude, I. S., & Davis, M. H. (2012). Brain regions recruited for the effortful comprehension of noise-vocoded words. Language and Cognitive Processes, 27(7–8), 1145–1166. doi:10.1080/01690965.2012.662280
  • Hickok, G. (2010). The role of mirror neurons in speech perception and action word semantics. Language and Cognitive Processes, 25(6), 749–776. doi:10.1080/01690961003595572
  • Hickok, G., Houde, J., & Rong, F. (2011). Sensorimotor integration in speech processing: Computational basis and neural organization. Neuron, 69(3), 407–422. doi:10.1016/j.neuron.2011.01.019
  • Hickok, G., & Poeppel, D. (2007). The cortical organization of speech processing. Nature Reviews Neuroscience, 8(5), 393–402. doi:10.1038/nrn2113
  • Hurley, R. S., Bonakdarpour, B., Wang, X., & Mesulam, M.-M. (2015). Asymmetric connectivity between the anterior temporal lobe and the language network. Journal of Cognitive Neuroscience, 27(3), 464–473. doi:10.1162/jocn_a_00722
  • Iverson, P., & Kuhl, P. (1995). Mapping the perceptual magnet effect for speech using signal detection theory and multidimensional scaling. The Journal of the Acoustical Society of America, 97(1), 553–562. doi:10.1121/1.412280
  • Iverson, P., & Kuhl, P. K. (1996). Influences of phonetic identification and category goodness on American listeners’ perception of r and l. Journal of the Acoustical Society of America, 99(2), 1130–1140. doi: 10.1121/1.415234
  • Iverson, P., Kuhl, P. K., Akahane-Yamada, R., Diesch, E., Tohkura, Y., Kettermann, A., & Siebert, C. (2003). A perceptual interference account of acquisition difficulties for non-native phonemes. Cognition, 87(1), B47–B57. doi:10.1016/S0010-0277(02)00198-1
  • Iverson, P., Wagner, A., Pinet, M., & Rosen, S. (2011). Cross-language specialization in phonetic processing: English and Hindi perception of /w/-/v/ speech and nonspeech. Journal of the Acoustical Society of America, 130(5), EL297–EL303. doi:10.1121/1.3632048
  • Iverson, P., Wagner, A., & Rosen, S. (2016). Effects of language experience on pre-categorical perception: Distinguishing general from specialized processes in speech perception. The Journal of the Acoustical Society of America, 139(4), 1799–1809. doi:10.1121/1.4944755
  • Jacquemot, C., Pallier, C., LeBihan, D., Dehaene, S., & Dupoux, E. (2003). Phonological grammar shapes the auditory cortex: A functional magnetic resonance imaging study. Journal of Neuroscience, 23(29), 9541–9546.
  • Jepsen, M. L., Ewert, S. D., & Dau, T. (2008). A computational model of human auditory signal processing and perception. The Journal of the Acoustical Society of America, 124(1), 422–438. doi:10.1121/1.2924135
  • Kaas, J. H., & Hackett, T. A. (2000). Subdivisions of auditory cortex and processing streams in primates. Proceedings of the National Academy of Sciences, 97(22), 11793–11799. doi:10.1073/pnas.97.22.11793
  • Kaas, J. H., Hackett, T. A., & Tramo, M. J. (1999). Auditory processing in primate cerebral cortex. Current Opinion in Neurobiology, 9(2), 164–170. doi: 10.1016/S0959-4388(99)80022-1
  • Kamourieh, S., Braga, R. M., Leech, R., Newbould, R. D., Malhotra, P., & Wise, R. J. S. (2015). Neural systems involved when attending to a speaker. Cerebral Cortex, 25(11), 4284–4298. doi:10.1093/cercor/bhu325
  • Kaplan, J. T., Man, K., & Greening, S. G. (2015). Multivariate cross-classification: Applying machine learning techniques to characterize abstraction in neural representations. Frontiers in Human Neuroscience, 9 (March), 151. doi:10.3389/fnhum.2015.00151
  • Kilian-Hutten, N., Valente, G., Vroomen, J., & Formisano, E. (2011). Auditory cortex encodes the perceptual interpretation of ambiguous sound. Journal of Neuroscience, 31(5), 1715–1720. doi:10.1523/JNEUROSCI.4572-10.2011
  • Kluender, K. R., & Alexander, J. M. (2008). Perception of speech sounds. The Senses: A Comprehensive Reference, 3, 829–860. doi:10.1016/B978-012370880-9.00067-0
  • Kriegeskorte, N., & Bandettini, P. (2007). Analyzing for information, not activation, to exploit high-resolution fMRI. Neuroimage, 38(4), 649–662. doi:10.1016/j.neuroimage.2007.02.022
  • Kriegeskorte, N., Goebel, R., & Bandettini, P. (2006). Information-based functional brain mapping. Proceedings of the National Academy of Sciences, 103(10), 3863–3868. doi:10.1073/pnas.0600244103
  • Kriegeskorte, N., & Kievit, R. (2013). Representational geometry: Integrating cognition, computation, and the brain. Trends in Cognitive Sciences, 17(8), 401–412. doi:10.1016/j.tics.2013.06.007
  • Kriegeskorte, N., Mur, M., & Bandettini, P. (2008). Representational similarity analysis – connecting the branches of systems neuroscience. Frontiers in Systems Neuroscience, 2 (November), 4–10. doi:10.3389/neuro.06.004.2008
  • Kwong, K. K., Belliveau, J. W., Chesler, D. A., Goldberg, I. E., Weisskoff, R. M., Poncelet, B. P., … Turner, R. (1992). Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation. Proceedings of the National Academy of Sciences, 89(12), 5675–5679. doi:10.1073/pnas.89.12.5675
  • Kyong, J. S., Scott, S. K., Rosen, S., Howe, T. B., Agnew, Z. K., & McGettigan, C. (2014). Exploring the roles of spectral detail and intonation contour in speech intelligibility: An FMRI study. Journal of Cognitive Neuroscience, 26(8), 1748–1763. doi:10.1162/jocn_a_00583
  • Lakatos, P., Shah, A. S., Knuth, K. H., Ulbert, I., Karmos, G., Schroeder, C. E., … Schroeder, C. E. (2005). An oscillatory hierarchy controlling neuronal excitability and stimulus processing in the auditory cortex. Journal of Neurophysiology, 94, 1904–1911. doi:10.1152/jn.00263.2005
  • Langers, D. R. M., Van Dijk, P., & Backes, W. H. (2005). Interactions between hemodynamic responses to scanner acoustic noise and auditory stimuli in functional magnetic resonance imaging. Magnetic Resonance in Medicine, 53(1), 49–60. doi:10.1002/mrm.20315
  • Lee, Y.-S., Turkeltaub, P., Granger, R., & Raizada, R. D. S. (2012). Categorical speech processing in Broca’s area: An fMRI study using multivariate pattern-based analysis. Journal of Neuroscience, 32(11), 3942–3948. doi:10.1523/JNEUROSCI.3814-11.2012
  • Leff, A. P., Schofield, T. M., Stephan, K. E., Crinion, J. T., Friston, K. J., & Price, C. J. (2008). The cortical dynamics of intelligible speech. Journal of Neuroscience, 28(49), 13209–13215. doi:10.1523/JNEUROSCI.2903-08.2008
  • Leonard, M. K., & Chang, E. F. (2014). Dynamic speech representations in the human temporal lobe. Trends in Cognitive Sciences, 18(9), 472–479. doi:10.1016/j.tics.2014.05.001
  • Lima, C. F., Lavan, N., Evans, S., Agnew, Z., Halpern, A. R., Shanmugalingam, P., … Scott, S. K. (2015). Feel the noise: Relating individual differences in auditory imagery to the structure and function of sensorimotor systems. Cerebral Cortex, 25(11), 4638–4650. doi:10.1093/cercor/bhv134
  • Logothetis, N. K., Pauls, J., Augath, M., Trinath, T., & Oeltermann, a. (2001). Neurophysiological investigation of the basis of the fMRI signal. Nature, 412(6843), 150–157. doi:10.1038/35084005
  • Logothetis, N. K., & Wandell, B. A. (2004). Interpreting the BOLD signal. Annual Review of Physiology, 66(1), 735–769. doi:10.1146/annurev.physiol.66.082602.092845
  • Lotto, A. J., Hickok, G. S., & Holt, L. L. (2009). Reflections on mirror neurons and speech perception. Trends in Cognitive Sciences, 13(3), 110–114. doi:10.1016/j.tics.2008.11.008
  • Marslen-Wilson, W. D. (1987). Functional parallelism in spoken word-recognition. Cognition, 25(1–2), 71–102. doi:10.1016/0010-0277(87)90005-9
  • McClelland, J. L., & Elman, J. L. (1986). The TRACE model of speech perception. Cognitive Psychology, 18, 1–86. doi:10.1016/0010-0285(86)90015-0
  • McGettigan, C., Evans, S., Rosen, S., Agnew, Z. A., Shah, P., & Scott, S. K. (2012). An application of univariate and multivariate approaches in FMRI to quantifying the hemispheric lateralization of acoustic and linguistic processes. Journal of Cognitive Neuroscience, 24(3), 636–652. doi:10.1162/jocn_a_00161
  • McGettigan, C., & Scott, S. (2012). Cortical asymmetries in speech perception: What’s wrong, what's right and what's left? Trends in Cognitive Sciences, 16(5), 269–276. doi:10.1016/j.tics.2012.04.006
  • Meekings, S., Evans, S., Lavan, N., Boebinger, D., Krieger-Redwood, K., Cooke, M., & Scott, S. K. (2016). Distinct neural systems recruited when speech production is modulated by different masking sounds. The Journal of the Acoustical Society of America, 140(1), 8–19. doi:10.1121/1.4948587
  • Mesgarani, N., & Chang, E. F. (2012). Selective cortical representation of attended speaker in multi-talker speech perception. Nature, 485(7397), 233–236. doi:10.1038/nature11020
  • Mesgarani, N., Cheung, C., Johnson, K., & Chang, E. F. (2014). Phonetic feature encoding in human superior temporal gyrus. Science, 343(6174), 1006–1010. doi:10.1126/science.1245994
  • Miller, G., & Nicely, P. (1955). An analysis of perceptual confusions among some English consonants. Journal of the Acoustical Society of America, 27, 338–352. doi:10.1121/1.1907526
  • Millman, R. E., Johnson, S. R., & Prendergast, G. (2015). The role of phase-locking to the temporal envelope of speech in auditory perception and speech intelligibility. Journal of Cognitive Neuroscience, 27(3), 533–545. doi:10.1162/jocn_a_00719
  • Misaki, M., Kim, Y., Bandettini, P. A., & Kriegeskorte, N. (2010). Comparison of multivariate classifiers and response normalizations for pattern-information fMRI. Neuroimage, 53(1), 103–118. doi:10.1016/j.neuroimage.2010.05.051
  • Mohr, B., Difrancesco, S., Harrington, K., Evans, S., & Pulvermüller, F. (2014). Changes of right-hemispheric activation after constraint-induced, intensive language action therapy in chronic aphasia: fMRI evidence from auditory semantic processing. Frontiers in Human Neuroscience, 8 (November), 919. doi:10.3389/fnhum.2014.00919
  • Mourao-Miranda, J., Bokde, A. L. W., Born, C., Hampel, H., & Stetter, M. (2005). Classifying brain states and determining the discriminating activation patterns: Support Vector Machine on functional MRI data. Neuroimage, 28(4), 980–995. doi:10.1016/j.neuroimage.2005.06.070
  • Mumford, J. A., Davis, T., & Poldrack, R. A. (2014). The impact of study design on pattern estimation for single-trial multivariate pattern analysis. NeuroImage, 103, 130–138. doi:10.1016/j.neuroimage.2014.09.026
  • Mur, M., Bandettini, P. A., & Kriegeskorte, N. (2009). Revealing representational content with pattern-information fMRI—an introductory guide. Social Cognitive and Affective Neuroscience, 4(1), 101–109. doi:10.1093/scan/nsn044
  • Narain, C., Scott, S. K., Wise, R. J. S., Rosen, S., Leff, A., Iversen, S. D., & Matthews, P. M. (2003). Defining a left-lateralized response specific to intelligible speech using fMRI. Cerebral Cortex, 13(12), 1362–1368. doi: 10.1093/cercor/bhg083
  • Nili, H., Wingfield, C., Walther, A., Su, L., Marslen-Wilson, W., & Kriegeskorte, N. (2014). A toolbox for representational similarity analysis. PLoS Computational Biology, 10(4), e1003553. doi:10.1371/journal.pcbi.1003553
  • Norman, K. A., Polyn, S. M., Detre, G. J., & Haxby, J. V. (2006). Beyond mind-reading: multi-voxel pattern analysis of fMRI data. Trends in Cognitive Sciences, 10(9), 424–430. doi:10.1016/j.tics.2006.07.005
  • Norris, D., & Mcqueen, J. M. (2008). Shortlist B: A Bayesian model of continuous speech recognition. Psychological Review, 115(2), 357–395. doi:10.1037/0033-295X.115.2.357
  • Nourski, K. V., Brugge, J. F., Reale, R., Kovach, C. K., Oya, H., Kawasaki, H., … Howard, M. (2013). Coding of repetitive transients by auditory cortex on posterolateral superior temporal gyrus in humans: An intracranial electrophysiology study. Journal of Neurophysiology, 109(319), 1283–1295. doi:10.1152/jn.00718.2012
  • Nourski, K. V., Steinschneider, M., Oya, H., Kawasaki, H., Jones, R. D., & Howard, M. (2014). Spectral organization of the human lateral superior temporal gyrus revealed by intracranial recordings. Cerebral Cortex, 24(2), 340–352. doi:10.1093/cercor/bhs314
  • Obleser, J., Boecker, H., Drzezga, A., Haslinger, B., Hennenlotter, A., Roettinger, M., … Rauschecker, J. P. (2006). Vowel sound extraction in anterior superior temporal cortex. Human Brain Mapping, 27(7), 562–571. doi:10.1002/hbm.20201
  • Obleser, J., & Eisner, F. (2009). Pre-lexical abstraction of speech in the auditory cortex. Trends in Cognitive Sciences, 13(1), 14–19. doi:10.1016/j.tics.2008.09.005
  • Obleser, J., Eisner, F., & Kotz, S. A. (2008). Bilateral speech comprehension reflects differential sensitivity to spectral and temporal features. Journal of Neuroscience, 28(32), 8116–8123. doi:10.1523/JNEUROSCI.1290-08.2008
  • Obleser, J., & Kotz, S. (2010). Expectancy constraints in degraded speech modulate the language comprehension network. Cerebral Cortex, 20(3), 633–640. doi:10.1093/cercor/bhp128
  • Obleser, J., Leaver, A. M., Vanmeter, J., & Rauschecker, J. P. (2010). Segregation of vowels and consonants in human auditory cortex: Evidence for distributed hierarchical organization. Frontiers in Psychology, 1, 232. doi:10.3389/fpsyg.2010.00232
  • Obleser, J., & Weisz, N. (2012). Suppressed alpha oscillations predict intelligibility of speech and its acoustic details. Cerebral Cortex, 22, 2466–2477. doi:10.1093/cercor/bhr325
  • Obleser, J., Wise, R. J. S., Dresner, M. A., & Scott, S. K. (2007). Functional integration across brain regions improves speech perception under adverse listening conditions. Journal of Neuroscience, 27(9), 2283–2289. doi:10.1523/JNEUROSCI.4663-06.2007
  • Obleser, J., Zimmermann, J., Van Meter, J., & Rauschecker, J. P. (2007). Multiple stages of auditory speech perception reflected in event-related fMRI. Cerebral Cortex, 17, 2251–2257. doi:10.1093/cercor/bhl133
  • Ogawa, S., Menon, R. S., Tank, D. W., Kim, S. G., Merkle, H., Ellermann, J. M., & Ugurbil, K. (1993). Functional brain mapping by blood oxygenation level-dependent contrast magnetic resonance imaging. A comparison of signal characteristics with a biophysical model. Biophysical Journal, 64(3), 803–812. doi:10.1016/S0006-3495(93)81441-3
  • Okada, K., Rong, F., Venezia, J., Matchin, W., Hsieh, I. H., Saberi, K., … Hickok, G. (2010). Hierarchical organization of human auditory cortex: Evidence from acoustic invariance in the response to intelligible speech. Cerebral Cortex, 20, 2486–2495. doi:10.1093/cercor/bhp318
  • Osnes, B., Hugdahl, K., & Specht, K. (2011). Effective connectivity analysis demonstrates involvement of premotor cortex during speech perception. Neuroimage, 54(3), 2437–2445. doi:10.1016/j.neuroimage.2010.09.078
  • O’Toole, A. J., Jiang, F., Abdi, H., Penard, N., Dunlop, J. P., & Parent, M. A. (2007). Theoretical, statistical, and practical perspectives on pattern-based classification approaches to the analysis of functional neuroimaging data. Journal of Cognitive Neuroscience, 19(11), 1735–1752. doi:10.1162/jocn.2007.19.11.1735
  • Pasley, B. N., David, S. V., Mesgarani, N., Flinker, A., Shamma, S., Crone, N. E., … Chang, E. F. (2012). Reconstructing speech from human auditory cortex. PLoS Biology, 10(1), e1001251. doi:10.1371/journal.pbio.1001251
  • Patterson, K., Nestor, P. J., & Rogers, T. T. (2007). Where do you know what you know? The representation of semantic knowledge in the human brain. Nature Reviews Neuroscience, 8(12), 976–987. doi:10.1038/nrn2277
  • Patterson, R., Allerhand, M., & Giguere, C. (1995). Time-domain modeling of peripheral auditory processing: A modular architecture and a software platform. The Journal of the Acoustical Society of America, 98(4), 1890–1894. doi:10.1121/1.414456
  • Peelle, J. E. (2012). The hemispheric lateralization of speech processing depends on what “speech” is: A hierarchical perspective. Frontiers in Human Neuroscience, 6 (November), 1–4. doi:10.3389/fnhum.2012.00309
  • Peelle, J. E. (2014). Methodological challenges and solutions in auditory functional magnetic resonance imaging. Frontiers in Neuroscience, 8 (8 JUL), 1–13. doi:10.3389/fnins.2014.00253
  • Peelle, J. E., Eason, R. J., Schmitter, S., Schwarzbauer, C., & Davis, M. H. (2010). Evaluating an acoustically quiet EPI sequence for use in fMRI studies of speech and auditory processing. NeuroImage, 52(4), 1410–1419. doi:10.1016/j.neuroimage.2010.05.015
  • Peelle, J. E., Gross, J., & Davis, M. H. (2013). Phase-locked responses to speech in human auditory cortex are enhanced during comprehension. Cerebral Cortex, 23(6), 1378–1387. doi:10.1093/cercor/bhs118
  • Pereira, F., Mitchell, T., & Botvinick, M. (2009). Machine learning classifiers and fMRI: A tutorial overview. Neuroimage, 45(1), S199–S209. doi:10.1016/j.neuroimage.2008.11.007
  • Petersen, S. E., & Posner, M. I. (2012). The attention system of the human brain: 20 years after. Annual Review of Neuroscience, 35(1), 73–89. doi:10.1146/annurev-neuro-062111-150525
  • Pfeuffer, J., van de Moortele, P.-F., Yacoub, E., Shmuel, A., Adriany, G., Andersen, P., … Hu, X. (2002). Zoomed functional imaging in the human brain at 7 Tesla with simultaneous high spatial and high temporal resolution. NeuroImage, 17(1), 272–286. doi:10.1006/nimg.2002.1103
  • Poeppel, D. (2003). The analysis of speech in different temporal integration windows: cerebral lateralization as ‘asymmetric sampling in time’. Speech Communication, 41(1), 245–255. doi:10.1016/S0167-6393(02)00107-3
  • Poser, B., Versluis, M. J., Hoogduin, J. M., & Norris, D. G. (2006). BOLD contrast sensitivity enhancement and artifact reduction with multiecho EPI: Parallel-acquired inhomogeneity-desensitized fMRI. Magnetic Resonance in Medicine, 55(6), 1227–1235. doi:10.1002/mrm.20900
  • Price, C. J. (2012). A review and synthesis of the first 20years of PET and fMRI studies of heard speech, spoken language and reading. NeuroImage, 62(2), 816–847. doi:10.1016/j.neuroimage.2012.04.062
  • Pulvermüller, F., & Fadiga, L. (2010). Active perception: Sensorimotor circuits as a cortical basis for language. Nature Reviews Neuroscience, 11, 351–360. doi:10.1038/nrn2811
  • Pulvermüller, F., Huss, M., Kherif, F., Moscoso del Prado Martin, F., Hauk, O., & Shtyrov, Y. (2006). Motor cortex maps articulatory features of speech sounds. Proceedings of the National Academy of Sciences, 103(20), 7865–7870. doi:10.1073/pnas.0509989103
  • Raizada, R. D. S., & Poldrack, R. A. (2007). Selective amplification of stimulus differences during categorical processing of speech. Neuron, 56(4), 726–740. doi:10.1016/j.neuron.2007.11.001
  • Raizada, R. D. S., Tsao, F. M., Liu, H. M., & Kuhl, P. K. (2010). Quantifying the adequacy of neural representations for a cross-language phonetic discrimination task: Prediction of individual differences. Cerebral Cortex, 20(1), 1–12. doi:10.1093/cercor/bhp076
  • Rauschecker, J. P., & Scott, S. K. (2009). Maps and streams in the auditory cortex: Nonhuman primates illuminate human speech processing. Nature Neuroscience, 12(6), 718–724. doi:10.1038/nn.2331
  • Rauschecker, J. P., & Tian, B. (2000). Mechanisms and streams for processing of “what” and “where” in auditory cortex. Proceedings of the National Academy of Sciences, 97(22), 11800–11806. doi:10.1073/pnas.97.22.11800
  • Rodd, J., Davis, M., & Johnsrude, I. (2005). The neural mechanisms of speech: fMRI studies of semantic ambiguity. Cerebral Cortex, 15(8), 1261–1269. doi:10.1093/cercor/bhi009
  • Rosen, S., & Iverson, P. (2007). Constructing adequate non-speech analogues: What is special about speech anyway? Developmental Science, 10(2), 165–168. doi:10.1111/j.1467-7687.2007.00550.x
  • Rosen, S., Wise, R. J. S., Chadha, S., Conway, E. J., & Scott, S. K. (2011). Hemispheric asymmetries in speech perception: Sense, nonsense and modulations. PLoS ONE, 6(9), e24672. doi:10.1371/journal.pone.0024672
  • Santoro, R., Moerel, M., De Martino, F., Goebel, R., Ugurbil, K., Yacoub, E., & Formisano, E. (2014). Encoding of natural sounds at multiple spectral and temporal resolutions in the human auditory cortex. PLoS Computational Biology, 10(1), e1003412. doi:10.1371/journal.pcbi.1003412
  • Schmitter, S., Diesch, E., Amann, M., Kroll, a., Moayer, M., & Schad, L. R. (2008). Silent echo-planar imaging for auditory FMRI. Magnetic Resonance Materials in Physics, Biology and Medicine, 21(5), 317–325. doi:10.1007/s10334-008-0132-4
  • Schonwiesner, M., Rubsamen, R., & von Cramon, D. (2005). Hemispheric asymmetry for spectral and temporal processing in the human antero-lateral auditory belt cortex. European Journal of Neuroscience, 22(6), 1521–1528. doi:10.1196/annals.1360.051
  • Schwarzbauer, C., Davis, M. H., Rodd, J. M., & Johnsrude, I. (2006). Interleaved Silent Steady State (ISSS) imaging: A new sparse imaging method applied to auditory fMRI. NeuroImage, 29(3), 774–782. doi:10.1016/j.neuroimage.2005.08.025
  • Scott, S. K., Blank, C. C., Rosen, S., & Wise, R. J. S. (2000). Identification of a pathway for intelligible speech in the left temporal lobe. Brain, 123(12), 2400–2406. doi:10.1093/brain/123.12.2400
  • Scott, S. K., & Evans, S. (2010). Categorizing speech. Nature Neuroscience, 13(11), 1304–1306. doi:10.1038/nn1110-1304
  • Scott, S., McGettigan, C., & Eisner, F. (2009). A little more conversation, a little less action – candidate roles for the motor cortex in speech perception. Nature Reviews Neuroscience, 10(4), 295–302. doi:10.1038/nrn2603
  • Simmonds, A. J., Leech, R., Collins, C., Redjep, O., & Wise, R. J. S. (2014). Sensory-motor integration during speech production localizes to both left and right plana temporale. Journal of Neuroscience, 34(39), 12963–12972. doi:10.1523/JNEUROSCI.0336-14.2014
  • Smith, S. M., Fox, P. T., Miller, K. L., Glahn, D. C., Fox, P. M., Mackay, C. E., … Beckmann, C. F. (2009). Correspondence of the brain’s functional architecture during activation and rest. Proceedings of the National Academy of Sciences, 106(31), 13040–13045. doi:10.1073/pnas.0905267106
  • Staeren, N., Renvall, H., De Martino, F., Goebel, R., & Formisano, E. (2009). Sound categories are represented as distributed patterns in the human auditory cortex. Current Biology, 19(6), 498–502. doi:10.1016/j.cub.2009.01.066
  • Stephan, K. E., Penny, W. D., Moran, R. J., den Ouden, H. E. M., Daunizeau, J., & Friston, K. J. (2010). Ten simple rules for dynamic causal modeling. Neuroimage, 49(4), 3099–3109. doi:10.1016/j.neuroimage.2009.11.015
  • Todd, M. T., Nystrom, L. E., & Cohen, J. D. (2013). Confounds in multivariate pattern analysis: Theory and rule representation case study. NeuroImage, 77, 157–165. doi:10.1016/j.neuroimage.2013.03.039
  • Tyler, L. K., Shafto, M. A., Randall, B., Wright, P., Marslen-Wilson, W. D., & Stamatakis, E. A. (2010). Preserving syntactic processing across the adult life span: The modulation of the frontotemporal language system in the context of age-related atrophy. Cerebral Cortex, 20(2), 352–364. doi:10.1093/cercor/bhp105
  • Tyler, L. K., Wright, P., Randall, B., Marslen-Wilson, W. D., & Stamatakis, E. A. (2010). Reorganization of syntactic processing following left-hemisphere brain damage: Does right-hemisphere activity preserve function? Brain, 133(11), 3396–3408. doi:10.1093/brain/awq262
  • Upadhyay, J., Silver, A., Knaus, T. A., Lindgren, K. A., Ducros, M., Kim, D. S., & Tager-Flusberg, H. (2008). Effective and structural connectivity in the human auditory cortex. Journal of Neuroscience, 28(13), 3341–3349. doi:10.1523/JNEUROSCI.4434-07.2008
  • Vaden, K. I., Kuchinsky, S. E., Cute, S. L., Ahlstrom, J. B., Dubno, J. R., & Eckert, M. (2013). The cingulo-opercular network provides word-recognition benefit. Journal of Neuroscience, 33(48), 18979–18986. doi:10.1523/JNEUROSCI.1417-13.2013
  • Visser, M., Jefferies, E., & Lambon Ralph, M. (2010). Semantic processing in the anterior temporal lobes: A meta-analysis of the functional neuroimaging literature. Journal of Cognitive Neuroscience, 22(6), 1083–1094. doi:10.1162/jocn.2009.21309
  • Walther, A., Nili, H., Ejaz, N., Alink, A., Kriegeskorte, N., & Diedrichsen, J. (2016). Reliability of dissimilarity measures for multi-voxel pattern analysis. NeuroImage, 137, 188–200. doi:10.1016/j.neuroimage.2015.12.012
  • Watkins, K. E., Paus, T., Lerch, J. P., Zijdenbos, a., Collins, D. L., Neelin, P., … Evans, A. C. (2001). Structural asymmetries in the human brain: A voxel-based statistical analysis of 142 MRI scans. Cerebral Cortex, 11(9), 868–877. doi:10.1093/cercor/11.9.868
  • Wild, C. J., Yusuf, A., Wilson, D. E., Peelle, J. E., Davis, M. H., & Johnsrude, I. S. (2012). Effortful listening: The processing of degraded speech depends critically on attention. Journal of Neuroscience, 32(40), 14010–14021. doi:10.1523/JNEUROSCI.1528-12.2012
  • Wilson, S. M., Saygin, A. P., Sereno, M. I., & Iacoboni, M. (2004). Listening to speech activates motor areas involved in speech production. Nature Neuroscience, 7(7), 701–702. doi:10.1038/nn1263
  • Xu, J., Zhang, S., Calhoun, V. D., Monterosso, J., Li, C.-S. R., Worhunsky, P. D., … Potenza, M. N. (2013). Task-related concurrent but opposite modulations of overlapping functional networks as revealed by spatial ICA. NeuroImage, 79, 62–71. doi:10.1016/j.neuroimage.2013.04.038
  • Yacoub, E., Duong, T. Q., Van De Moortele, P.-F., Lindquist, M., Adriany, G., Kim, S.-G., … Hu, X. (2003). Spin-echo fMRI in humans using high spatial resolutions and high magnetic fields. Magnetic Resonance in Medicine, 49, 655–664. doi:10.1002/mrm.10433
  • Zatorre, R. J., & Belin, P. (2001). Spectral and temporal processing in human auditory cortex. Cerebral Cortex, 11(10), 946–953. doi: 10.1093/cercor/11.10.946
  • Zatorre, R. J., Belin, P., & Penhune, V. B. (2002). Structure and function of auditory cortex: music and speech. Trends in Cognitive Sciences, 6(1), 37–46. doi: 10.1016/S1364-6613(00)01816-7
  • Zatorre, R. J., & Gandour, J. T. (2008). Neural specializations for speech and pitch: moving beyond the dichotomies. Philosophical Transactions of the Royal Society B: Biological Sciences, 363(1493), 1087–1104. doi:10.1098/rstb.2007.2161

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.