4,075
Views
1
CrossRef citations to date
0
Altmetric
Preface

How to study spoken language understanding: a survey of neuroscientific methods

&
Pages 805-817 | Received 24 Feb 2017, Accepted 06 Apr 2017, Published online: 16 May 2017

References

  • Adank, P., Nuttall, H. E., & Kennedy-Higgins, D. (2017). Transcranial magnetic stimulation and motor evoked potentials in speech perception research. Language, Cognition and Neuroscience. doi: 10.1080/23273798.2016.1257816
  • Ahissar, E., Nagarajan, S., Ahissar, M., Protopapas, A., Mahncke, H., & Merzenich, M. M. (2001). Speech comprehension is correlated with temporal response patterns recorded from auditory cortex. Proceedings of the National Academy of Sciences of the United States of America, 98, 13367–13372. doi: 10.1073/pnas.201400998
  • Amunts, K., & Zilles, K. (2012). Architecture and organizational principles of Broca’s region. Trends in Cognitive Sciences, 16, 418–426. doi: 10.1016/j.tics.2012.06.005
  • Badcock, N. A., & Groen, M. A. (2017). What can functional transcranial Doppler ultrasonography tell us about spoken language understanding? Language, Cognition and Neuroscience. doi: 10.1080/23273798.2016.1276608
  • Bandettini, P. A. (2012). Twenty years of functional MRI: The science and the stories. NeuroImage, 62, 575–588. doi: 10.1016/j.neuroimage.2012.04.026
  • Bates, E., Wilson, S. M., Saygin, A. P., Dick, F., Sereno, M. I., Knight, R. T., & Dronkers, N. F. (2003). Voxel-based lesion-symptom mapping. Nature Neuroscience, 6, 448–450. doi: 10.1038/nn1050
  • Blank, H., & Davis, M. H. (2016). Prediction errors but not sharpened signals simulate multivoxel fMRI patterns during speech perception. PLoS Biology, 14, doi: 10.1371/journal.pbio.1002577
  • Chesca, B., John, D., & Mellor, C. J. (2015). Flux-coherent series SQUID array magnetometers operating above 77 K with superior white flux noise than single-SQUIDs at 4.2 K. Applied Physics Letters, 107, doi: 10.1063/1.4932969
  • Coleman, M. R., Davis, M. H., Rodd, J. M., Robson, T., Ali, A., Owen, A. M., & Pickard, J. D. (2009). Towards the routine use of brain imaging to aid the clinical diagnosis of disorders of consciousness. Brain, 132, 2541–2552. doi: 10.1093/brain/awp183
  • Coleman, M. R., Rodd, J. M., Davis, M. H., Johnsrude, I. S., Menon, D. K., Pickard, J. D., & Owen, A. M. (2007). Do vegetative patients retain aspects of language comprehension? Evidence from fMRI. Brain, 130, 2494–2507. doi: 10.1093/brain/awm170
  • Crinion, J., & Price, C. J. (2005). Right anterior superior temporal activation predicts auditory sentence comprehension following aphasic stroke. Brain, 128, 2858–2871. doi: 10.1093/brain/awh659
  • Datta, A., Bansal, V., Diaz, J., Patel, J., Reato, D., & Bikson, M. (2009). Gyri-precise head model of transcranial direct current stimulation: Improved spatial focality using a ring electrode versus conventional rectangular pad. Brain Stimulation, 2, 201–207. doi: 10.1016/j.brs.2009.03.005
  • Davis, M. H. (2003). Connectionist modelling of lexical segmentation and vocabulary acquisition. In P. Quinlan (Ed.), Connectionist models of development: Developmental processes in real and artificial neural networks (pp. 125–159). Hove: Psychology Press.
  • Davis, M. H., Coleman, M. R., Absalom, A. R., Rodd, J. M., Johnsrude, I. S., Matta, B. F., …  Menon, D. K. (2007). Dissociating speech perception and comprehension at reduced levels of awareness. Proceedings of the National Acadamy of .Sciences of the United States of America, 104, 16032–16037. doi: 10.1073/pnas.0701309104
  • Davis, M. H., Ford, M. A., Kherif, F., & Johnsrude, I. S. (2011). Does semantic context benefit speech understanding through “top-down” processes? Evidence from time-resolved sparse fMRI. Journal of Cognitive Neuroscience, 23, 3914–3932. doi: 10.1162/jocn_a_00084
  • Davis, M. H., & Rodd, J. M. (2011). Brain structures underlying lexical processing of speech: Evidence from brain imaging. In G. Gaskell & P. Zwitserlood (Eds.), Lexical representation: A multidisciplinary approach (pp. 197–230). Berlin: Mouton de Gruyter.
  • Devlin, J. T., & Watkins, K. E. (2007). Stimulating language: Insights from TMS. Brain, 130, 610–622. doi: 10.1093/brain/awl331
  • Dhamne, S. C., Kothare, R. S., Yu, C., Hsieh, T. H., Anastasio, E. M., Oberman, L., … Rotenberg, A. (2014). A measure of acoustic noise generated from transcranial magnetic stimulation coils. Brain Stimulation, 7, 432–434. doi: 10.1016/j.brs.2014.01.056
  • Evans, S., & McGettigan, C. (2017). Comprehending auditory speech: Previous and potential contributions of functional MRI. Language, Cognition and Neuroscience. doi: 10.1080/23273798.2016.1272703
  • Gagnepain, P., Henson, R. N., & Davis, M. H. (2012). Temporal predictive codes for spoken words in auditory cortex. Current Biology, 22, 615–621. doi: 10.1016/j.cub.2012.02.015
  • Gaskell, M. G., & Marslen-Wilson, W. D. (1997). Integrating form and meaning: A distributed model of speech perception. Language and Cognitive Processes, 12, 613–656. doi: 10.1080/016909697386646
  • Goldinger, S. D. (1996). Auditory lexical decision. Language and Cognitive Processes, 11, 559–567. doi: 10.1080/016909696386944
  • Golestani, N., Paus, T., & Zatorre, R. J. (2002). Anatomical correlates of learning novel speech sounds. Neuron, 35, 997–1010. doi: 10.1016/S0896-6273(02)00862-0
  • Grosjean, F. (1996). Gating. Language and Cognitive Processes, 11, 597–604. doi: 10.1080/016909696386999
  • Grosjean, F., & Frauenfelder, U. H. (1996). A guide to spoken word recognition paradigms: Introduction. Language and Cognitive Processes, 11, 553–558. doi: 10.1080/016909696386935
  • Hall, D. A., Haggard, M. P., Akeroyd, M. A., Palmer, A. R., Summerfield, A. Q., Elliott, M. R., … Bowtell, R. W. (1999). “Sparse” temporal sampling in auditory fMRI. Human Brain Mapping, 7, 213–223. doi: 10.1002/(SICI)1097-0193(1999)7:3<213::AID-HBM5>3.0.CO;2-N
  • Hallam, G. P., Whitney, C., Hymers, M., Gouws, A. D., & Jefferies, E. (2016). Charting the effects of TMS with fMRI: Modulation of cortical recruitment within the distributed network supporting semantic control. Neuropsychologia, 93, 40–52. doi: 10.1016/j.neuropsychologia.2016.09.012
  • Hay, J., & Drager, K. (2010). Stuffed toys and speech perception. Linguistics, 48, 865–892. doi: 10.1515/ling.2010.027
  • Henson, R. (2005). What can functional neuroimaging tell the experimental psychologist? Quarterly Journal of Experimental Psychology Section A: Human Experimental Psychology, 58, 193–233. doi: 10.1080/02724980443000502
  • Hickok, G., & Poeppel, D. (2007). The cortical organization of speech processing. Nature Reviews Neuroscience, 8, 393–402. doi: 10.1038/nrn2113
  • Hill, N. J., Gupta, D., Brunner, P., Gunduz, A., Adamo, M. A., Ritaccio, A., & Schalk, G. (2012). Recording human electrocorticographic (ECoG) signals for neuroscientific research and real-time functional cortical mapping. Journal of Visualized Experiments, doi: 10.3791/3993
  • Johnson, C. J., Beitchman, J. H., & Brownlie, E. B. (2010). Twenty-year follow-up of children with and without speech-language impairments: Family, educational, occupational, and quality of life outcomes. American Journal of Speech-Language Pathology, 19, 51–65. doi: 10.1044/1058-0360(2009/08-0083)
  • Kilborn, K., & Moss, H. (1996). Word monitoring. Language and Cognitive Processes, 11, 689–694. doi: 10.1080/016909696387105
  • Kocagoncu, E., Clarke, A., Devereux, B. J., & Tyler, L. K. (2017). Decoding the cortical dynamics of sound-meaning mapping. Journal of Neuroscience, 37, 1312–1319. doi: 10.1523/JNEUROSCI.2858-16.2016
  • Kok, P., Bains, L. J., Van Mourik, T., Norris, D. G., & De Lange, F. P. (2016). Selective activation of the deep layers of the human primary visual cortex by top-down feedback. Current Biology, 26(3), 371–376. doi: 10.1016/j.cub.2015.12.038
  • Krishnan, S., Watkins, K. E., & Bishop, D. V. M. (2016). Neurobiological basis of language learning difficulties. Trends in Cognitive Sciences, 20, 701–714. doi: 10.1016/j.tics.2016.06.012
  • Lerner, Y., Honey, C. J., Katkov, M., & Hasson, U. (2014). Temporal scaling of neural responses to compressed and dilated natural speech. Journal of Neurophysiology, 111, 2433–2444. doi: 10.1152/jn.00497.2013
  • Liebenthal, E., Desai, R., Ellingson, M. M., Ramachandran, B., Desai, A., & Binder, J. R. (2010). Specialization along the left superior temporal sulcus for auditory categorization. Cerebral Cortex, 20, 2958–2970. doi: 10.1093/cercor/bhq045
  • MacGregor, L. J., Pulvermüller, F., van Casteren, M., & Shtyrov, Y. (2012). Ultra-rapid access to words in the brain. Nature Communications, 3, doi: 10.1038/ncomms1715
  • Marie, D., & Golestani, N. (2017). Brain structural imaging of receptive speech and beyond: A review of current methods. Language, Cognition and Neuroscience. doi: 10.1080/23273798.2016.1250926
  • Marslen-Wilson, W. D. (1973). Linguistic structure and speech shadowing at very short latencies. Nature, 244, 522–523. doi: 10.1038/244522a0
  • Marslen Wilson, W. D. (1975). Sentence perception as an interactive parallel process. Science, 189, 226–228. doi: 10.1126/science.189.4198.226
  • Marslen-Wilson, W. D. (1984). Function and process in spoken word recognition. In H. Bouma & D. Bouwhuis (Eds.), Attention and performance X: Control of language processes (pp. 125–150). Hillsdale, NJ: Erlbaum.
  • Martin, C. D., Garcia, X., Potter, D., Melinger, A., & Costa, A. (2016). Holiday or vacation? The processing of variation in vocabulary across dialects. Language, Cognition and Neuroscience, 31, 375–390. doi: 10.1080/23273798.2015.1100750
  • Mechelli, A., Crinion, J. T., Noppeney, U., O’ Doherty, J., Ashburner, J., Frackowiak, R. S., & Price, C. J. (2004). Neurolinguistics: Structural plasticity in the bilingual brain. Nature, 431, 757. doi: 10.1038/431757a
  • Muckli, L., De Martino, F., Vizioli, L., Petro, L. S., Smith, F. W., Ugurbil, K., … Yacoub, E. (2015). Contextual feedback to superficial layers of V1. Current Biology, 25(20), 2690–2695. doi: 10.1016/j.cub.2015.08.057
  • Mullennix, J. W., Pisoni, D. B., & Martin, C. S. (1989). Some effects of talker variability on spoken word recognition. Journal of the Acoustical Society of America, 85, 365–378. doi: 10.1121/1.397688
  • Norris, D. (1994). Shortlist: A connectionist model of continuous speech recognition. Cognition, 52, 189–234. doi: 10.1016/0010-0277(94)90043-4
  • Nygaard, L. C., & Pisoni, D. B. (1998). Talker-specific learning in speech perception. Perception and Psychophysics, 60, 355–376. doi: 10.3758/BF03206860
  • O’Rourke, T. B., & Holcomb, P. J. (2002). Electrophysiological evidence for the efficiency of spoken word processing. Biological Psychology, 60, 121–150. doi: 10.1016/S0301-0511(02)00045-5
  • Passingham, R. E., & Rowe, J. B. (2015). A short guide to brain imaging: The neuroscience of human cognition. Oxford: Oxford University Press.
  • Peelle, J. E. (2014). Methodological challenges and solutions in auditory functional magnetic resonance imaging. Frontiers in Neuroscience, 8, doi: 10.3389/fnins.2014.00253
  • Peelle, J. E. (2017). Optical neuroimaging of spoken language. Language, Cognition and Neuroscience. doi: 10.1080/23273798.2017.1290810
  • Peelle, J. E., Eason, R. J., Schmitter, S., Schwarzbauer, C., & Davis, M. H. (2010). Evaluating an acoustically quiet EPI sequence for use in fMRI studies of speech and auditory processing. NeuroImage, 52, 1410–1419. doi: 10.1016/j.neuroimage.2010.05.015
  • Peelle, J. E., Troiani, V., Grossman, M., & Wingfield, A. (2011). Hearing loss in older adults affects neural systems supporting speech comprehension. Journal of Neuroscience, 31, 12638–12643. doi: 10.1523/JNEUROSCI.2559-11.2011
  • Perrachione, T. H., & Ghosh, S. S. (2013). Optimized design and analysis of sparse-sampling fMRI experiments. Frontiers in Neuroscience, 7, doi: 10.3389/fnins.2013.00055
  • Pisoni, D. B. (1996). Word identification in noise. Language and Cognitive Processes, 11, 681–687. doi: 10.1080/016909696387097
  • Plaut, D. C., McClelland, J. L., Seidenberg, M. S., & Patterson, K. (1996). Understanding normal and impaired word reading: Computational principles in quasi-regular domains. Psychological Review, 103, 56–115. doi: 10.1037/0033-295X.103.1.56
  • Poldrack, R. A. (2006). Can cognitive processes be inferred from neuroimaging data? Trends in Cognitive Sciences, 10, 59–63. doi: 10.1016/j.tics.2005.12.004
  • Poldrack, R. A., Wagner, A. D., Prull, M. W., Desmond, J. E., Glover, G. H., & Gabrieli, J. D. E. (1999). Functional specialization for semantic and phonological processing in the left inferior prefrontal cortex. NeuroImage, 10, 15–35. doi: 10.1006/nimg.1999.0441
  • Price, C. J. (2012). A review and synthesis of the first 20years of PET and fMRI studies of heard speech, spoken language and reading. NeuroImage, 62, 816–847. doi: 10.1016/j.neuroimage.2012.04.062
  • Price, C. J., & Friston, K. J. (1999). Scanning patients with tasks they can perform. Human Brain Mapping, 8, 102–108. doi: 10.1002/(SICI)1097-0193(1999)8:2/3<102::AID-HBM6>3.0.CO;2-J
  • Pugh, K. R., Frost, S. J., Rothman, D. L., Hoeft, F., Del Tufo, S. N., Mason, G. F., … Fulbrig, R. K. (2014). Glutamate and choline levels predict individual differences in reading ability in emergent readers. Journal of Neuroscience, 34, 4082–4089. doi: 10.1523/JNEUROSCI.3907-13.2014
  • Price, C. J., Hope, T. M., & Seghier, M. L. (2017). Ten problems and solutions when predicting individual outcome from lesion site after stroke. NeuroImage, 145, 200–208. doi: 10.1016/j.neuroimage.2016.08.006
  • Rauschecker, J. P., & Scott, S. K. (2009). Maps and streams in the auditory cortex: Nonhuman primates illuminate human speech processing. Nature Neuroscience, 12, 718–724. doi: 10.1038/nn.2331
  • Rodd, J. M., Davis, M. H., & Johnsrude, I. S. (2005). The neural mechanisms of speech comprehension: fMRI studies of semantic ambiguity. Cerebral Cortex, 15, 1261–1269. doi: 10.1093/cercor/bhi009
  • Rodd, J. M., Gaskell, M. G., & Marslen-Wilson, W. D. (2004). Modelling the effects of semantic ambiguity in word recognition. Cognitive Science, 28, 89–104. doi:10.1016/j.cogsci.2003.08.002
  • Rodd, J. M., Vitello, S., Woollams, A. M., & Adank, P. (2015). Localising semantic and syntactic processing in spoken and written language comprehension: An activation likelihood estimation meta-analysis. Brain and Language, 141, 89–102. doi: 10.1016/j.bandl.2014.11.012
  • Romei, V., Brodbeck, V., Michel, C., Amedi, A., Pascual-Leone, A., & Thut, G. (2008). Spontaneous fluctuations in posterior α-band EEG activity reflect variability in excitability of human visual areas. Cerebral Cortex, 18, 2010–2018. doi: 10.1093/cercor/bhm229
  • Ruff, C. C., Blankenburg, F., Bjoertomt, O., Bestmann, S., Freeman, E., Haynes, J. D., … Driver, J. (2006). Concurrent TMS-fMRI and psychophysics reveal frontal influences on human retinotopic visual cortex. Current Biology, 16, 1479–1488. doi: 10.1016/j.cub.2006.06.057
  • Sabri, M., Binder, J. R., Desai, R., Medler, D. A., Leitl, M. D., & Liebenthal, E. (2008). Attentional and linguistic interactions in speech perception. NeuroImage, 39, 1444–1456. doi: 10.1016/j.neuroimage.2007.09.052
  • Saur, D., & Hartwigsen, G. (2012). Neurobiology of language recovery after stroke: Lessons from neuroimaging studies. Archives of Physical Medicine and Rehabilitation, 93, S15–S25. doi: 10.1016/j.apmr.2011.03.036
  • Saur, D., Lange, R., Baumgaertner, A., Schraknepper, V., Willmes, K., Rijntjes, M., & Weiller, C. (2006). Dynamics of language reorganization after stroke. Brain, 129, 1371–1384. doi: 10.1093/brain/awl090
  • Scheering, R., Koopmans, P. J., Van Mourik, T., Jensen, O., & Norris, D. G. (2016). The relationship between oscillatory EEG activity and the laminar-specific BOLD signal. Proceedings of the National Academy of Sciences of the United States of America, 113, 6761–6766. doi: 10.1073/pnas.1522577113
  • Schwarzbauer, C., Davis, M. H., Rodd, J. M., & Johnsrude, I. (2006). Interleaved silent steady state (ISSS) imaging: A new sparse imaging method applied to auditory fMRI. Neuroimage., 29, 774–782. doi: 10.1016/j.neuroimage.2005.08.025
  • Scott, S. K., Blank, C. C., Rosen, S., & Wise, R. J. (2000). Identification of a pathway for intelligible speech in the left temporal lobe. Brain, 123, 2400–2466. doi: 10.1093/brain/123.12.2400
  • Sumner, P., Edden, R. A. E., Bompas, A., Evans, C. J., & Singh, K. D. (2010). More GABA, less distraction: A neurochemical predictor of motor decision speed. Nature Neuroscience, 13, 825–827. doi: 10.1038/nn.2559
  • Tabossi, P. (1996). Cross-modal semantic priming. Language and Cognitive Processes, 11, 569–576. doi: 10.1080/016909696386953
  • Tanenhaus, M. K., & Spivey-Knowlton, M. J. (1996). Eye-tracking. Language and Cognitive Processes, 11, 583–588. doi: 10.1080/016909696386971
  • Taylor, J. S. H., Rastle, K., & Davis, M. H. (2014). Interpreting response time effects in functional imaging studies. NeuroImage, 99, 419–433. doi: 10.1016/j.neuroimage.2014.05.073
  • Thut, G., & Miniussi, C. (2009). New insights into rhythmic brain activity from TMS-EEG studies. Trends in Cognitive Sciences, 13, 182–189. doi: 10.1016/j.tics.2009.01.004
  • Tourville, J. A., & Guenther, F. H. (2011). The DIVA model: A neural theory of speech acquisition and production. Language and Cognitive Processes, 26, 952–981. doi: 10.1080/01690960903498424
  • Turner, B. M., Forstmann, B. U., Love, B. C., Palmeri, T. J., & Van Maanen, L. (2017). Approaches to analysis in model-based cognitive neuroscience. Journal of Mathematical Psychology, 76, 65–79. doi: 10.1016/j.jmp.2016.01.001
  • Ueno, T., Saito, S., Rogers, T., & Lambon Ralph, M. (2011). Lichtheim 2: Synthesizing aphasia and the neural basis of language in a neurocomputational model of the dual dorsal-ventral language pathways. Neuron, 72, 385–396. doi: 10.1016/j.neuron.2011.09.013
  • Vaden Jr, K. I., Kuchinsky, S. E., Cute, S. L., Ahlstrom, J. B., Dubno, J. R., &  Eckert, M. A. (2013). The cingulo-opercular network provides word-recognition benefit. Journal of Neuroscience, 33, 18979–18986. doi: 10.1523/JNEUROSCI.1417-13.2013
  • Vagharchakian, L., Dehaene-Lambertz, G., Pallier, C., & Dehaene, S. (2012). A temporal bottleneck in the language comprehension network. Journal of Neuroscience, 32, 9089–9102. doi: 10.1523/JNEUROSCI.5685-11.2012
  • Van Berkum, J. J. A., Van Den Brink, D., Tesink, C. M. J. Y., Kos, M., & Hagoort, P. (2008). The neural integration of speaker and message. Journal of Cognitive Neuroscience, 20, 580–591. doi: 10.1162/jocn.2008.20054
  • Weber, M. J., & Thompson-Schill, S. L. (2010). Functional neuroimaging can support causal claims about brain function. Journal of Cognitive Neuroscience, 22, 2415–2416. doi: 10.1162/jocn.2010.21461
  • Wild, C. J., Yusuf, A., Wilson, D. E., Peelle, J. E., Davis, M. H., & Johnsrude, I. S. (2012). Effortful listening: The processing of degraded speech depends critically on attention. Journal of Neuroscience, 32, 14010–14021. doi: 10.1523/JNEUROSCI.1528-12.2012
  • Wilson, S. M. (2017). Lesion-symptom mapping in the study of spoken language understanding. Language, Cognition and Neuroscience. doi: 10.1080/23273798.2016.1248984
  • Wöstmann. M., Fiedler, L., & Obleser, J. (2017). Tracking the signal, cracking the code: Speech and speech comprehension in non-invasive human electrophysiology. Language, Cognition and Neuroscience. doi: 10.1080/23273798.2016.1262051
  • Zoefel, B., & Davis, M. H. (2017). Transcranial electric stimulation for the investigation of speech perception and comprehension. Language, Cognition and Neuroscience. doi: 10.1080/23273798.2016.1247970
  • Zwitserlood, P. (1996). Form priming. Language and Cognitive Processes, 11, 589–596. doi: 10.1080/016909696386980
  • Zwitserlood, P., & Schriefers, H. (1995). Effects of sensory information and processing time in spoken-word recognition. Language and Cognitive Processes, 10, 121–136. doi: 10.1080/01690969508407090

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.