3,300
Views
13
CrossRef citations to date
0
Altmetric
Regular Articles

Early EEG correlates of word frequency and contextual predictability in reading

, , , &
Pages 625-640 | Received 05 Feb 2018, Accepted 02 Jan 2019, Published online: 03 Apr 2019

References

  • Barber, H. A., & Kutas, M. (2007). Interplay between computational models and cognitive electrophysiology in visual word recognition. Brain Research Reviews, 53(1), 98–123. doi: 10.1016/j.brainresrev.2006.07.002
  • Bell, A. J., & Sejnowski, T. J. (1995). An information-maximization approach to blind separation and blind deconvolution. Neural Computation, 7(6), 1129–1159. doi: 10.1162/neco.1995.7.6.1129
  • Dambacher, M., Dimigen, O., Braun, M., Wille, K., Jacobs, A. M., & Kliegl, R. (2012). Stimulus onset asynchrony and the timeline of word recognition: Event-related potentials during sentence reading. Neuropsychologia, 50(8), 1852–1870. doi: 10.1016/j.neuropsychologia.2012.04.011
  • Dambacher, M., Kliegl, R., Hofmann, M., & Jacobs, A. M. (2006). Frequency and predictability effects on event-related potentials during reading. Brain Research, 1084(1), 89–103. doi: 10.1016/j.brainres.2006.02.010
  • Dambacher, M., Rolfs, M., Göllner, K., Kliegl, R., & Jacobs, A. M. (2009). Event-related potentials reveal rapid verification of predicted visual input. PLoS One, 4, e5047. doi: 10.1371/journal.pone.0005047
  • Davies, M. (2004). BYU-BNC (based on the British National Corpus from Oxford University Press). Retrieved from http://corpus.byu.edu/bnc/
  • DeLong, K. A., Urbach, T. P., & Kutas, M. (2005). Probabilistic word pre-activation during language comprehension inferred from electrical brain activity. Nature Neuroscience, 8(8), 1117–1121. doi: 10.1038/nn1504
  • Delorme, A., & Makeig, S. (2004). EEGLAB: An open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. Journal of Neuroscience Methods, 134(1), 9–21. doi: 10.1016/j.jneumeth.2003.10.009
  • Dimigen, O., Sommer, W., Hohlfeld, A., Jacobs, A. M., & Kliegl, R. (2011). Coregistration of eye movements and EEG in natural reading: Analyses and review. Journal of Experimental Psychology: General, 140(4), 552–572. doi: 10.1037/a0023885
  • Dudschig, C., Mackenzie, I. G., Strozyk, J., Kaup, B., & Leuthold, H. (2016). The sounds of sentences: Differentiating the influence of physical sound, sound imagery, and linguistically implied sounds on physical sound processing. Cognitive, Affective, & Behavioral Neuroscience, 16(5), 940–961. doi: 10.3758/s13415-016-0444-1
  • Dutta, A. (1995). Experimental run time system: Software for developing and running experiments on IBM-compatible PCs. Behavior Research Methods, Instruments, and Computers, 27(4), 516–519. doi: 10.3758/BF03200453
  • Fodor, J. A. (1983). The modularity of mind. Cambridge, MA: MIT Press.
  • Forster, K. I. (1979). Levels of processing and the structure of the language processor. In W. E. Cooper & E. Walker (Eds.), Sentence processing: Psycholinguistic essays presented to Merrill Garrett (pp. 27–85). Hillsdale, NJ: Erlbaum.
  • Friedman, D., Simson, R., Ritter, W., & Rapin, I. (1975). The late positive component (P300) and information processing in sentences. Electroencephalography and Clinical Neurophysiology, 38(3), 255–262. doi: 10.1016/0013-4694(75)90246-1
  • Gold, B. T., Balota, D. A., Jones, S. J., Powell, D. K., Smith, C. D., & Andersen, A. H. (2006). Dissociation of automatic and strategic lexical-semantics: Functional magnetic resonance imaging evidence for differing roles of multiple frontotemporal regions. Journal of Neuroscience, 26(24), 6523–6532. doi: 10.1523/JNEUROSCI.0808-06.2006
  • Grainger, J., & Holcomb, P. J. (2009). Watching the word go by: On the time-course of component processes in visual word recognition. Language and Linguistics Compass, 3(1), 128–156. doi: 10.1111/j.1749-818X.2008.00121.x
  • Hagoort, P. (2003). Interplay between syntax and semantics during sentence comprehension: ERP effects of combining syntactic and semantic violations. Journal of Cognitive Neuroscience, 15(6), 883–899. doi: 10.1162/089892903322370807
  • Hand, C. J., Miellet, S., O’Donnell, P. J., & Sereno, S. C. (2010). The frequency-predictability interaction in reading: It depends where you’re coming from. Journal of Experimental Psychology: Human Perception and Performance, 36(5), 1294–1313.
  • Hand, C. J., O’Donnell, P. J., & Sereno, S. C. (2012). Word-initial letters influence fixation durations during fluent reading. Frontiers in Psychology: Language Sciences, 3(85), 1–19. doi: 10.3389/fpsyg.2012.00268
  • Hauk, O., Davis, M. H., Ford, M., Pulvermüller, F., & Marslen-Wilson, W. D. (2006). The time course of visual word recognition as revealed by linear regression analysis of ERP data. NeuroImage, 30(4), 1383–1400. doi: 10.1016/j.neuroimage.2005.11.048
  • Hauk, O., & Pulvermüller, F. (2004). Effects of word length and frequency on the human event-related potential. Clinical Neurophysiology, 115(5), 1090–1103. doi: 10.1016/j.clinph.2003.12.020
  • Hillyard, S. A., & Münte, T. F. (1984). Selective attention to color and location: An analysis with event-related brain potentials. Perception & Psychophysics, 36(2), 185–198. doi: 10.3758/BF03202679
  • Hofmann, M. J., Dambacher, M., Jacobs, A. M., Kliegl, R., Radach, R., Kuchinke, L., … Hermann, M. J. (2014). Occipital and orbitofrontal hemodynamics during naturally paced reading: An fNIRS study. NeuroImage, 94, 193–202. doi: 10.1016/j.neuroimage.2014.03.014
  • Hofmann, M. J., & Jacobs, A. M. (2014). Interactive activation and competition models and semantic context: From behavioral to brain data. Neuroscience and Biobehavioral Reviews, 46(1), 85–104. doi: 10.1016/j.neubiorev.2014.06.011
  • Inhoff, A. W. (1984). Two stages of word processing during eye fixations in the reading of prose. Journal of Verbal Learning and Verbal Behavior, 23(5), 612–624. doi: 10.1016/S0022-5371(84)90382-7
  • Kliegl, R., Grabner, E., Rolfs, M., & Engbert, R. (2004). Length, frequency, and predictability effects of words on eye movements in reading. European Journal of Cognitive Psychology, 16(1/2), 262–284. doi: 10.1080/09541440340000213
  • Kliegl, R., Nuthmann, A., & Engbert, R. (2006). Tracking the mind during reading: The influence of past, present, and future words on fixation durations. Journal of Experimental Psychology: General, 135(1), 12–35. doi: 10.1037/0096-3445.135.1.12
  • Kretzschmar, R., Schlesewsky, M., & Staub, A. (2015). Dissociating word frequency and predictability effects in reading: Evidence from coregistration of eye movements and EEG. Journal of Experimental Psychology: Learning, Memory, and Cognition, 41(6), 1648–1662.
  • Kutas, M., & Federmeier, K. D. (2011). Thirty years and counting: Finding meaning in the N400 component of the event-related brain potential (ERP). Annual Review of Psychology, 62, 621–647. doi: 10.1146/annurev.psych.093008.131123
  • Kutas, M., & Hillyard, S. A. (1984). Brain potentials during reading reflect word expectancy and semantic association. Nature, 307, 161–163. doi: 10.1038/307161a0
  • Leuthold, H., Kunkel, A., Mackenzie, I. G., & Filik, R. (2015). Online processing of moral transgressions: ERP evidence for spontaneous evaluation. Social Cognitive and Affective Neuroscience, 10(8), 1021–1029. doi: 10.1093/scan/nsu151
  • McClelland, J. L. (1987). The case for interactionism in language processing. In M. Coltheart (Ed.), Attention & performance XII: The psychology of reading (pp. 1–36). London: Erlbaum.
  • Miellet, S., Sparrow, L., & Sereno, S. C. (2007). Word frequency and predictability effects in reading French: An evaluation of the E-Z Reader model. Psychonomic Bulletin & Review, 14(4), 762–769. doi: 10.3758/BF03196834
  • Murray, W. S., & Forster, K. I. (2004). Serial mechanisms in lexical access: The rank hypothesis. Psychological Review, 111(3), 721–756. doi: 10.1037/0033-295X.111.3.721
  • Nolan, H., Whelan, R., & Reilly, R. B. (2010). FASTER: Fully automated statistical thresholding for EEG artifact rejection. Journal of Neuroscience Methods, 192(1), 152–162. doi: 10.1016/j.jneumeth.2010.07.015
  • Oostenveld, R., Fries, P., Maris, E., & Schoffelen, J. M. (2011). FieldTrip: Open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data. Computational Intelligence and Neuroscience, 2011(156869). doi:10.1155/2011/156869
  • Penolazzi, B., Hauk, O., & Pulvermüller, F. (2007). Early semantic context integration and lexical access as revealed by event-related brain potentials. Biological Psychology, 74(3), 374–388. doi: 10.1016/j.biopsycho.2006.09.008
  • Polich, J., & Donchin, E. (1988). P300 and the word frequency effect. Electroencephalography and Clinical Neurophysiology, 70(1), 33–45. doi: 10.1016/0013-4694(88)90192-7
  • Price, C. J., & Devlin, J. T. (2011). The interactive account of ventral occipitotemporal contributions to reading. Trends in Cognitive Sciences, 15(6), 246–253. doi: 10.1016/j.tics.2011.04.001
  • Rayner, K., Ashby, J., Pollatsek, A., & Reichle, E. D. (2004). The effects of frequency and predictability on eye fixations in reading: Implications for the E-Z Reader model. Journal of Experimental Psychology: Human Perception and Performance, 30(4), 720–732.
  • Rayner, K., & Sereno, S. C. (1994). Eye movements in reading: Psycholinguistic studies. In M. A. Gernsbacher (Ed.), Handbook of psycholinguistic research (pp. 57–81). New York: Academic Press.
  • Rugg, M. D. (1990). Event-related brain potentials dissociate repetition effects of high- and low-frequency words. Memory & Cognition, 18(4), 367–379. doi: 10.3758/BF03197126
  • Scott, G. G., O’Donnell, P. J., Leuthold, H., & Sereno, S. C. (2009). Early emotion word processing: Evidence from event-related potentials. Biological Psychology, 80(1), 95–104. doi: 10.1016/j.biopsycho.2008.03.010
  • Sereno, S. C., Brewer, C. C., & O’Donnell, P. J. (2003). Context effects in word recognition: Evidence for early interactive processing. Psychological Science, 14(4), 328–333. doi: 10.1111/1467-9280.14471
  • Sereno, S. C., Hand, C. J., Shahid, A., Yao, B., & O’Donnell, P. J. (2018). Testing the limits of contextual constraint: Interactions with word frequency and parafoveal preview during fluent reading. Quarterly Journal of Experimental Psychology, 71(1), 302–313. doi: 10.1080/17470218.2017.1327981
  • Sereno, S. C., & Rayner, K. (2000). The when and where of reading in the brain. Brain and Cognition, 42(1), 78–81. doi: 10.1006/brcg.1999.1167
  • Sereno, S. C., & Rayner, K. (2003). Measuring word recognition in reading: Eye movements and event-related potentials. Trends in Cognitive Sciences, 7(11), 489–493. doi: 10.1016/j.tics.2003.09.010
  • Sereno, S. C., Rayner, K., & Posner, M. I. (1998). Establishing a time-line of word recognition: Evidence from eye movements and event-related potentials. NeuroReport, 9(10), 2195–2200. doi: 10.1097/00001756-199807130-00009
  • Stanovich, K. E., & West, R. F. (1983). On priming by a sentence context. Journal of Experimental Psychology: General, 112(1), 1–36. doi: 10.1037/0096-3445.112.1.1
  • Sternberg, S. (1969). Memory-scanning: Mental processes revealed by reaction-time experiments. American Scientist, 57(4), 421–457.
  • Trapp, S., & Bar, M. (2015). Prediction, context, and competition in visual recognition. Annals of the New York Academy of Sciences, 1339(1), 190–198. doi: 10.1111/nyas.12680
  • van Berkum, J. J. A., Brown, C. M., Zwitserlood, P., Kooijman, V., & Hagoort, P. (2005). Anticipating upcoming words in discourse: Evidence from ERPs and reading times. Journal of Experimental Psychology: Learning, Memory, and Cognition, 31(3), 443–467.
  • van Berkum, J. J. A., Hagoort, P., & Brown, C. M. (1999). Semantic integration in sentences and discourse: Evidence from the N400. Journal of Cognitive Neuroscience, 11(6), 657–671. doi: 10.1162/089892999563724
  • van Petten, C., & Kutas, M. (1990). Interactions between sentence context and word frequency in event-related brain potentials. Memory & Cognition, 18(4), 380–393. doi: 10.3758/BF03197127
  • West, R. F., & Stanovich, K. E. (1982). Source of inhibition in experiments on the effect of sentence context on word recognition. Journal of Experimental Psychology: Learning, Memory, and Cognition, 8(5), 385–399.