1,409
Views
2
CrossRef citations to date
0
Altmetric
Regular Articles

Decreased sensitivity to changing durational parameters of syllable sequences in people who stutter

ORCID Icon &
Pages 179-187 | Received 03 Sep 2018, Accepted 03 Jul 2019, Published online: 15 Jul 2019

References

  • Ackermann, H., Mathiak, K., & Riecker, A. (2007). The contribution of the cerebellum to speech production and speech perception: Clinical and functional imaging data. The Cerebellum, 6, 202–213. doi: 10.1080/14734220701266742
  • Akkal, D., Dum, R. P., & Strick, P. L. (2007). Supplementary motor area and presupplementary motor area: Targets of basal ganglia and cerebellar output. Journal of Neuroscience, 27, 10659–10673. doi: 10.1523/JNEUROSCI.3134-07.2007
  • Alm, P. A. (2004). Stuttering and the basal ganglia circuits: A critical review of possible relations. Journal of Communication Disorders, 37, 325–369. doi: 10.1016/j.jcomdis.2004.03.001
  • Bostan, A. C., & Strick, P. L. (2018). The basal ganglia and the cerebellum: Nodes in an integrated network. Nature Reviews Neuroscience, 19, 338–350. doi: 10.1038/s41583-018-0002-7
  • Chang, S., Kenney, M. K., Loucks, T. M. J., & Ludlow, C. L. (2009). Brain activation abnormalities during speech and non-speech in stuttering speakers. Neuroimage, 46, 201–212. doi: 10.1016/j.neuroimage.2009.01.066
  • Cooper, M. H., & Allen, G. D. (1977). Timing control accuracy in normal speakers and stutterers. Journal of Speech and Hearing, 20, 55–71. doi: 10.1044/jshr.2001.55
  • Etchell, A. E., Johnson, B. W., & Sowman, P. F. (2014). Behavioral and multimodal neuroimaging evidence for a deficit in brain timing networks in stuttering: A hypothesis and theory. Frontiers in Human Neuroscience, 8, 467. doi: 10.3389/fnhum.2014.00467
  • Falk, S., Müller, T., & Dalla Bella, S. (2015). Non-verbal sensorimotor timing deficits in children and adolescents who stutter. Frontiers in Psychology, 6, 847. doi: 10.3389/fpsyg.2015.00847
  • Ghitza, O. (2013). The theta-syllable: A unit of speech information defined by cortical function. Frontiers in Psychology, 4, 138. doi: 10.3389/fpsyg.2013.00138
  • Giraud, A.-L., Neumann, K., Bachoud-Levi, A.-C., Gudenberg, A.-W., von Gudenbery, A. W., Euler, H. A., Lanfermann, H., & Preibisch, C. (2008). Severity of dysfluency correlates with basal ganglia activity in persistent developmental stuttering. Brain and Language, 104, 190–199. doi: 10.1016/j.bandl.2007.04.005
  • Greenberg, S., Carvey, H., Hitchcock, L., & Chang, S. (2003). Temporal properties of spontaneous speech—a syllable-centric perspective. Journal of Phonetics, 31, 465–485. doi: 10.1016/j.wocn.2003.09.005
  • Guenther, F. H., & Hickok, G. (2016). Neural models of motor speech control. In G. Hickok & S. L. Small (Eds.), Neurobiology of language (pp. 725–740). Amsterdam: Academic Press.
  • Harrington, J. (1988). Stuttering, delayed acoustic feedback, and linguistic rhythm. Journal of Speech, Language, and Hearing Research, 31, 36–47. doi: 10.1044/jshr.3101.36
  • Hilger, A. I., Zelaznik, H., & Smith, A. (2016). Evidence that bimanual motor timing performance is not a significant factor in developmental stuttering. Journal of Speech, Language, and Hearing Research, 59, 674–685. doi: 10.1044/2016_JSLHR-S-15-0172
  • Holm, S. (1979). A simple sequentially rejective multiple test procedure. Scandinavian Journal of Statistics, 6, 65–70.
  • Ivry, R. B., & Schlerf, J. E. (2008). Dedicated and intrinsic models of time perception. Trends in Cognitive Sciences, 12, 273–280. doi: 10.1016/j.tics.2008.04.002
  • Kotz, S. A., & Schwartze, M. (2016). Motor-timing and sequencing in speech production: A general-purpose framework. In G. Hickok & S. L. Small (Eds.), Neurobiology of language (pp. 717–724). Amsterdam: Academic Press.
  • Lotzmann, G. (1961). Zur Anwendung variierter Verzögerungs- zeiten bei Balbuties. Folia Phoniatrica et Logopaedica, 13, 276–312. doi: 10.1159/000262924
  • MacKay, D. G., & MacDonald, M. C. (1984). Stuttering as a sequencing and timing disorder. In R. F. Curlee & W. H. Perkins (Eds.), Nature and treatment of stuttering (pp. 261–282). San Diego, CA: New directions, College-Hill Press.
  • Macmillan, N. A., & Kaplan, H. L. (1985). Detection theory analysis of group data: Estimating sensitivity from average hit and false-alarm rates. Psychological Bulletin, 98, 185–199. doi: 10.1037/0033-2909.98.1.185
  • Mariën, P., Ackermann, H., Adamaszek, M., Barwood, C. H., Beaton, A., Desmond, J., & Ziegler, W. (2014). Consensus paper: Language and the cerebellum: An ongoing enigma. Cerebellum, 13, 386–410.
  • Merchant, H., Harrington, D. L., & Meck, W. H. (2013). Neural basis of the perception and estimation of time. Annual Review of Neuroscience, 36, 313–336. doi: 10.1146/annurev-neuro-062012-170349
  • Morton, J., Marcus, S. M., & Frankish, C. R. (1976). Perceptual centers (P-centers). Psychological Review, 83, 405–408. doi: 10.1037/0033-295X.83.5.405
  • Olander, L., Smith, A., & Zelaznik, H. (2010). Evidence that a motor timing deficit is a factor in the development of stuttering. Journal of Speech, Language, and Hearing Research, 53, 876–886. doi: 10.1044/1092-4388(2009/09-0007)
  • Oldfield, R. C. (1971). The assessment and analysis of handedness: The Edinburgh inventory. Neuropsychologia, 9, 97–113. doi: 10.1016/0028-3932(71)90067-4
  • Park, J., & Logan, K. J. (2015). The role of temporal speech cues in facilitating the fluency of adults who stutter. Journal of Fluency Disorders, 46, 41–55. doi: 10.1016/j.jfludis.2015.07.001
  • Peelle, J., & Davis, M. H. (2012). Neural oscillations carry speech rhythm through to comprehension. Frontiers in Psychology, 3, 320. doi: 10.3389/fpsyg.2012.00320
  • Petacchi, A., Laird, A. R., Fox, P. T., & Bower, J. M. (2005). Cerebellum and auditory function: An ALE meta-analysis of functional neuroimaging studies. Human Brain Mapping, 25, 118–128. doi: 10.1002/hbm.20137
  • Picard, N., & Strick, P. L. (2001). Imaging the premotor areas. Current Opinion in Neurobiology, 11, 663–672. doi: 10.1016/S0959-4388(01)00266-5
  • Poeppel, D. (2003). The analysis of speech in different temporal integration windows: Cerebral lateralization as ‘asymmetric sampling in time’. Speech Communication, 41, 245–255. doi: 10.1016/S0167-6393(02)00107-3
  • Port, R. F. (2003). Meter and speech. Journal of Phonetics, 31, 599–611. doi: 10.1016/j.wocn.2003.08.001
  • Riley, G. (1994). The stuttering severity instrument for adults and children (SSI-3) (3rd ed.). Austin, Texas: PRO-ED.
  • Rosen, S. (1992). Temporal information in speech: Acoustic, auditory and linguistic aspects. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 336, 367–373. doi: 10.1098/rstb.1992.0070
  • Sares, A. G., Deroche, M. L. D., Shiller, D. M., & Gracco, V. L. (2018). Timing variability of sensorimotor integration during vocalization in individuals who stutter. Scientific Reports, 8, 16340. doi: 10.1038/s41598-018-34517-1
  • Sares, A. G., Deroche, M. L. D., Shiller, D. M., & Gracco, V. L. (2019). Adults who stutter and metronome synchronization: Evidence for a nonspeech timing deficit. Annals of the New York Academy of Sciences.
  • Schwartze, M., & Kotz, S. A. (2013). A dual-pathway neural architecture for specific temporal prediction. Neuroscience and Biobehavioral Reviews, 37, 2587–2596. doi: 10.1016/j.neubiorev.2013.08.005
  • Schwartze, M., & Kotz, S. A. (2016). Contributions of cerebellar event-based temporal processing and preparatory function to speech perception. Brain and Language, 161, 28–32. doi: 10.1016/j.bandl.2015.08.005
  • Scott, S. K., McGettigan, C., & Eisner, F. (2009). A little more conversation, a little less action – candidate roles for the motor cortex in speech perception. Nature Reviews Neuroscience, 10, 295–302. doi: 10.1038/nrn2603
  • Soderberg, G. A. (1968). Delayed auditory feedback and stuttering. Journal of Speech and Hearing Disorders, 33, 260–267. doi: 10.1044/jshd.3303.260
  • Spencer, R. M. C., & Ivry, R. B. (2013). Cerebellum and timing. In M. Manto, D. L. Gruol, J. D. Schmahmann, N. Koibuchi, & F. Rossi (Eds.), Handbook of the cerebellum and cerebellar disorders (pp. 1201–1219). Dordrecht: Springer.
  • Stanislaw, H., & Todorov, N. (1999). Calculation of signal detection measures. Behavior Research Methods, Instruments, & Computers, 31, 137–149. doi: 10.3758/BF03207704
  • Strick, P. L., Dum, R. P., & Fiez, J. A. (2009). Cerebellum and nonmotor function. Annual Review of Neuroscience, 32, 413–434. doi: 10.1146/annurev.neuro.31.060407.125606
  • Tukey, J. W. (1958). Bias and confidence in not-quite large samples. The Annals of Mathematical Statistics, 29, 614–623. doi: 10.1214/aoms/1177706647
  • Van Riper, C. (1982). The nature of stuttering. Englewood Cliffs, NJ: Prentice-Hall.
  • Van Riper, C., & Erickson, R. L. (1996). Speech correction: An introduction to speech pathology and audiology. Boston: Allyn and Bacon.
  • Wechsler, D. (1997). Wechsler adult intelligence scale (3rd ed.). San Antonio, TX: The Psychological Corporation.
  • Wieland, E. A., McAuley, J. D., Dilley, L. C., & Chang, S. (2015). Evidence for a rhythm perception deficit in children who stutter. Brain & Language, 144, 26–34. doi: 10.1016/j.bandl.2015.03.008
  • Wiener, M., Turkeltaub, P., & Coslett, H. B. (2010). The image of time: A voxel-wise meta-analysis. Neuroimage, 49, 1728–1740. doi: 10.1016/j.neuroimage.2009.09.064