466
Views
0
CrossRef citations to date
0
Altmetric
REGULAR ARTICLE

The recognition of spoken pseudowords

ORCID Icon & ORCID Icon
Pages 1169-1190 | Received 30 Jun 2020, Accepted 07 Mar 2022, Published online: 27 Mar 2022

References

  • Allopenna, P. D., Magnuson, J. S., & Tanenhaus, M. K. (1998). Tracking the time course of spoken word recognition using eye movements: Evidence for continuous mapping models. Journal of Memory and Language, 38(4), 419–439. https://doi.org/10.1006/jmla.1997.2558
  • Arnold, D., Tomaschek, F., Sering, K., Lopez, F., & Baayen, R. H. (2017). Words from spontaneous conversational speech can be recognized with human-like accuracy by an error-driven learning algorithm that discriminates between meanings straight from smart acoustic features, bypassing the phoneme as recognition unit. PLoS ONE, 12(4), e0174623. https://doi.org/10.1371/journal.pone.0174623
  • Artiunian, V., & Lopukhina, A. (2020). The effects of phonological neighborhood density in childhood word production and recognition in Russian are opposite to English. Journal of Child Language, 47(6), 1244–1262. https://doi.org/10.1017/S0305000920000112
  • Baayen, R. H., Chuang, Y. -Y., Shafaei-Bajestan, E., & Blevins, J. P. (2019). The discriminative lexicon: A unified computational model for the lexicon and lexical processing in comprehension and production grounded not in (de)composition but in linear discriminative learning. Complexity, 2019(1), 1–39. https://doi.org/10.1155/2019/4895891
  • Baayen, R. H., & Milin, P. (2010). Analyzing reaction times. International Journal of Psychological Research, 3(2), 12–28. https://doi.org/10.21500/20112084.807
  • Baayen, R. H., Milin, P., Durevodic, D. F., Hendrix, P., & Marelli, M. (2011). An amorphous model for morphological processing in visual comprehension based on naive discriminative learning. Psychological Review, 118(3), 438–481. https://doi.org/10.1037/a0023851
  • Baayen, R. H., Piepenbrock, R., & Gulikers, L. (1995). The CELEX lexical database (CD-ROM). Philadelphia, PA: Linguistic Data Consortium, University of Pennsylvania.
  • Bailey, T. M., & Hahn, U. (2001). Determinants of wordlikeness: Phonotactics or lexical neighborhoods? Journal of Memory and Language, 44(4), 568–591. https://doi.org/10.1006/jmla.2000.2756
  • Balling, L. W., & Baayen, R. H. (2012). Probability and surprisal in auditory comprehension of morphologically complex words. Cognition, 125(1), 80–106. https://doi.org/10.1016/j.cognition.2012.06.003
  • Balota, D. A., Yap, M. J., Cortese, M. J., Hutchinson, K. I., Kessler, B., Loftis, B., Neely, J. H., Nelson, D. L., Simpson, G. B., & Treiman, R. (2007). The English lexicon project. Behavior Research Methods, 39(3), 445–459. https://doi.org/10.3758/BF03193014
  • Bates, D., Mächler, M., Bolker, B., & Walker, S. (2015). Fitting linear mixed-effects models using lme4. Journal of Statistical Software, 67(1), 1–48. https://doi.org/10.18637/jss.v067.i01
  • Berent, I., Steriade, D., Lennertz, T., & Vaknin, V. (2007). What we know about what we have never heard: Evidence from perceptual illusions. Cognition, 104(3), 591–630. https://doi.org/10.1016/j.cognition.2006.05.015
  • Beyersmann, E., Ziegler, J. C., Castles, A., Coltheart, M., Kezilas, Y., & Grainger, J. (2016). Morpho-orthographic segmentation without semantics. Psychonomic Bulletin & Review, 23(2), 533–539. https://doi.org/10.3758/s13423-015-0927-z
  • Bezanson, J., Edelman, A., Karpinski, S., & Shah, V. (2017). Julia: A fresh approach to numerical computing. SIAM Review, 59(1), 65–98. https://doi.org/10.1137/141000671
  • Chuang, Y.-Y., Voller, M.-l., Shafaei-Bajestan, E., Gahl, S., Hendrix, P., & Baayen, R. H. (2019). On the processing of nonwords in word naming and auditory lexical decision. In Sasha Calhoun, Paola Escudero, Marija Tabain, & Paul Warren (Eds.), Proceedings of the 19th International Congress of Phonetic Sciences, Melbourne, Australia 2019 (pp. 1233–1237).
  • Chuang, Y.-Y., Voller, M.-l., Shafaei-Bajestan, E., Gahl, S., Hendrix, P., & R. H. Baayen (2021). The processing of pseudoword form and meaning in production and comprehension: A computational modeling approach using Linear Discriminative Learning. Behavior Research Methods, 53(3), 945–976.
  • Coleman, J., & Pierrehumbert, J. (1997). Stochastic phonological grammars and acceptability. In Computational phonology: Third meeting of the ACL special interest group in computational phonology (pp. 49–56).
  • Connine, C. M., Blasko, D. G., & Hall, M. (1991). Effects of subsequent sentence context in auditory word recognition: Temporal and linguistic constrainst. Journal of Memory and Language, 30(2), 234–250. https://doi.org/10.1016/0749-596X(91)90005-5
  • Cook, N. R., Gillman, M. W., Rosner, B. A., Taylor, J. O., & Hennekens, C. H. (1997). Prediction of young adult blood pressure from childhood blood pressure, height, and weight. Journal of Clinical Epidemiology, 50(5), 571–579. https://doi.org/10.1016/S0895-4356(97)00046-2
  • Dahan, D., Magnuson, J. S., & Tanenhaus, M. K. (2001). Time course of frequency effects in spoken-word recognition: Evidence from eye movements. Cognitive Psychology, 42(4), 317–367. https://doi.org/10.1006/cogp.2001.0750
  • Davies, M. (2008). The Corpus of Contemporary American English (COCA). Retrieved from https://www.english-corpora.org/coca/.
  • Diaz, M. T., Karimi, H., Troutman, S. B. W., Gertel, V. H., A. L. Cosgrove, & Zhang, H. (2021). Neural sensitivity to phonological characteristics is stable across the lifespan. NeuroImage, 2253117511. https://doi.org/10.1016/j.neuroimage.2020.117511117511.
  • Dupoux, E., & Mehler, J. (1990). Monitoring the lexicon with normal and compressed speech: Frequency effects and the prelexical code. Journal of Memory and Language, 29(3), 316–335. https://doi.org/10.1016/0749-596X(90)90003-I
  • Emmorey, K. D. (1989). Auditory morphological priming in the lexicon. Language and Cognitive Processes, 4(2), 73–92. https://doi.org/10.1080/01690968908406358
  • Ernestus, M., & Cutler, A. (2015). Baldey: A database of auditory lexical decisions. The Quarterly Journal of Experimental Psychology, 68(8), 1469–1488. https://doi.org/10.1080/17470218.2014.984730
  • Feldman, L. B., & O'Connor, P. A. (2009). Early morphological processing is morphosemantic and not simply morpho-orthographic: A violation of form-then-meaning accounts of word recognition. Psychonomic Bulletin & Review, 16(4), 684–691. https://doi.org/10.3758/PBR.16.4.684
  • Ford, C., Nenadić, F., Brenner, D., & Tucker, B. V. (2018). Shorter phone duration facilitates isolated spoken word recognition. In Proceedings of the 11th International Conference on the Mental Lexicon, Edmonton, Alberta, Canada (pp. 1–4). https://doi.org/10.7939/R3V11W29B
  • Frisch, S. A., Large, N. R., & Pisoni, D. B. (2000). Perception of wordlikeness: Effects of segment probability and length on the processing of nonwords. Journal of Memory and Language, 42(4), 481–496. https://doi.org/10.1006/jmla.1999.2692
  • Gierut, J. A., Morrisette, M. L., & S. M. Ziemer (2010). Nonwords and generalization in children with phonological disorders. American Journal of Speech-Language Pathology, 19(2), 167–177. https://doi.org/10.1044/1058-0360(2009/09-0020)
  • Glanzer, M., & Bowles, N. (1976). Analysis of the word-frequency effect in recognition memory. Journal of Experimental Psychology: Human Learning and Memory, 2(1), 21–31. https://doi.org/10.1037/0278-7393.2.1.21
  • Goldinger, S. D., Luce, P. A., & Pisoni, D. B. (1989). Priming lexical neighbors of spoken words: Effects of competition and inhibition. Journal of Memory and Language, 28(5), 501–518. https://doi.org/10.1016/0749-596X(89)90009-0
  • Goodman, E., & J. C. Bates (1997). On the inseparability of grammar and the lexicon: Evidence from acquisition, aphasia and real-time processing. Language and Cognitive Processes, 12(5-6), 507–584. https://doi.org/10.1080/016909697386628
  • Grosjean, F. (1980). Spoken word recognition processes and the gating paradigm. Perception & Psychophysics, 28(4), 267–283. https://doi.org/10.3758/BF03204386
  • Hendrix, P., & Sun, C. C. (2020). A word or two about nonwords: Frequency, semantic neighborhood density, and orthography-to-semantics consistency effects for nonwords in the lexical decision task. Journal of Experimental Psychology, 47(1), 157–183. https://doi.org/10.1037/xlm0000819.
  • Howes, D. (1954). On the interpretation of word frequency as a variable affecting speed of recognition. Journal of Experimental Psychology, 48(2), 106–112. https://doi.org/10.1037/h0059478
  • Hulden, M. (2009). Foma: A finite-state compiler and library. In Proceedings of the 12th Conference of the European Chapter of the Association for Computational Linguistics (pp. 29–32). Association for Computational Linguistics.
  • Janse, E. (2009). Neighbourhood density effects in auditory non-word processing in aphasic listeners. Clinical Linguistics & Phonetics, 23(3), 196–207. https://doi.org/10.1080/02699200802394989
  • Janse, E., & Newman, R. S. (2013). Identifying nonwords: Effects of lexical neighborhoods, phonotactic probability, and listener characteristics. Language and Speech, 56(4), 421–441. https://doi.org/10.1177/0023830912447914
  • Järvikivi, J., & Pyykkönen, P. (2011). Sub- and supralexical information in early phases of lexical access. Frontiers in Psychology, 2, 282. https://doi.org/10.3389/fpsyg.2011.00282
  • Järvikivi, J., Pyykkönen, P., & Niemi, J. (2009). Exploiting degrees of inflectional ambiguity: Stem form and the time course of morphological processing. Journal of Experimental Psychology: Learning, Memory, and Cognition, 35(1), 221–237. https://doi.org/10.1037/a0014355
  • Kapatsinski, V. (2005). Sound similarity relations in the mental lexicon: Modeling the lexicon as a complex network (Progress Rep. 27). Indiana University Speech Research Laboratory.
  • Kelley, M. C. (2020). Phonetics.jl.
  • Kelley, M. C., & Tucker, B. V. (2022). Using acoustic distance and acoustic absement to quantify lexical competition. The Journal of the Acoustical Society of America, 151(2), 1367–1379. https://doi.org/10.1121/10.0009584
  • Keuleers, E., & Brysbaert, M. (2010). Wuggy: A multilingual pseudoword generator. Behavior Research Methods, 42(3), 627–633. https://doi.org/10.3758/BRM.42.3.627
  • Kotzor, S., Wetterlin, A., & Lahiri, A. (2017). Symmetry or asymmetry: Evidence for underspecification in the mental lexicon. In The Speech Processing Lexicon: Neurocognitive and Behavioural Approaches (pp. 85–106). De Gruyter Mouton.
  • Kučera, H., & Francis, W. N. (1967). Computational analysis of present-day American English. Dartmouth Publishing Group.
  • Lahiri, A. (2018). Predicting universal phonological contrasts. In Phonological typology (pp. 229–272). De Gruyter Mouton.
  • Lahiri, A., & Reetz, H. (2010). Distinctive features: Phonological underspecification in representation and processing. Journal of Phonetics, 38(1), 44–59. https://doi.org/10.1016/j.wocn.2010.01.002
  • Lázaro, M., Illera, V., & Sainz, J. (2016). The suffix priming effect: Further evidence for an early morpho-orthographic segmentation process independent of its semantic content. The Quarterly Journal of Experimental Psychology, 69(1), 197–208. https://doi.org/10.1080/17470218.2015.1031146
  • Lõo, K., & Järvikivi, J. (2019). Whole-word frequency effects in English masked priming: Very little CORN in CORNER and CORNET. In Proceedings of The 11th International Conference on the Mental Lexicon (pp. 1–4). https://doi.org/10.7939/r3-nfya-g649
  • Luce, P. A. (1986). Neighborhoods of words in the mental lexicon. Research on speech perception (Tech. Rep. No. 6). Department of Psychology, Indiana University.
  • Luce, P. A., Goldinger, S. D., Auer, E. T., & Vitevitch, M. S. (2000). Phonetic priming, neighborhood activation, and PARSYN. Perception & Psychophysics, 62(3), 615–625. https://doi.org/10.3758/BF03212113
  • Luce, P. A., & Pisoni, D. B. (1998). Recognizing spoken words: The neighborhood activation model. Ear and Hearing, 19(1), 1–36. https://doi.org/10.1097/00003446-199802000-00001
  • Luce, P. A., Pisoni, D. B., & Goldinger, S. D. (1990). Similarity neighborhoods of spoken words. In G. T. M. Altmann (Ed.), Cognitive models of speech processing (pp. 122–147). MIT Press.
  • Magnuson, J. S., You, H., Luthra, S., Li, M., Nam, H., Escabí, M., Brown, K., P. D. Allopenna, Theodore, R. M., Monto, N., & Rueckl, J. G. (2020). EARSHOT: A minimal neural network model of incremental human speech recognition. Cognitive Science, 44(4), e12823. https://doi.org/10.1111/cogs.v44.4
  • Marslen-Wilson, W., & Tyler, L. K. (1980). The temporal structure of spoken language understanding. Cognition, 8(1), 1–71. https://doi.org/10.1016/0010-0277(80)90015-3
  • Marslen-Wilson, W., & Zwitserlood, P. (1989). Accessing spoken words: The importance of word onsets. Journal of Experimental Psychology: Human Perception and Performance, 15(3), 576–585.https://doi.org/10.1037/0096-1523.15.3.576
  • Marslen-Wilson, W. D., & Welsh, A. (1978). Processing interactions and lexical access during word recognition in continuous speech. Cognitive Psychology, 10(1), 29–63. https://doi.org/10.1016/0010-0285(78)90018-X
  • McClelland, J. L., & Elman, J. L. (1986). The trace model of speech perception. Cognitive Psychology, 18(1), 1–86. https://doi.org/10.1016/0010-0285(86)90015-0
  • Morris, J., Porter, J. H., Grainger, J., & Holcomb, P. J. (2011). Effects of lexical status and morphological complexity in masked priming: An ERP study. Language and Cognitive Processes, 26(4–6), 558–599. https://doi.org/10.1080/01690965.2010.495482
  • Moscoso del Prado Martiń, F., Kostić, A., & Baayen, R. H. (2004). Putting the bits together: An information theoretical perspective on morphological processing. Cognition, 94(1), 1–18. https://doi.org/10.1016/j.cognition.2003.10.015
  • Nelson, N. R., & Wedel, A. (2017). The phonetic specificity of competition: Contrastive hyperarticulation of voice onset time in conversational English. Journal of Phonetics, 64(Suppl. C), 51–70. https://doi.org/10.1016/j.wocn.2017.01.008
  • Nenadić, F., ten Bosch, L., & Tucker, B. V. (2018). Implementing DIANA to model isolated auditory word recognition in English. In Proceedings of Interspeech 2018 (pp. 3772–3776).
  • Nenadić, F., & Tucker, B. V. (2020). Computational modelling of an auditory lexical decision experiment using jTRACE and TISK. Language, Cognition and Neuroscience, 35(10), 1326–1354. https://doi.org/10.1080/23273798.2020.1764600
  • Norris, D., & McQueen, J. M. (2008). Shortlist B: A Bayesian model of continuous speech recognition. Psychological Review, 115(2), 357–395. https://doi.org/10.1037/0033-295X.115.2.357
  • Norris, D., McQueen, J. M., & Cutler, A. (2000). Merging information in speech recognition: Feedback is never necessary. Behavioral and Brain Sciences, 23(3), 299–325. https://doi.org/10.1017/S0140525X00003241
  • Öhman, S. E. G. (1966). Coarticulation in VCV utterances: Spectrographic measurements. The Journal of the Acoustical Society of America, 39(1), 151–168. https://doi.org/10.1121/1.1909864
  • Pierrehumbert, J. (2003). Probabilistic phonology: Discrimination and robustness. In R. Bod, J. Hay, & S. Jannedy (Eds.), Probabilistic linguistics (pp. 177–228). MIT Press.
  • Pitt, M. A., Dilley, L., Johnson, K., Kiesling, S., Raymond, W., Hume, E., & Fosler-Lussier, E (2007). Buckeye corpus of conversational speech (2nd release). Department of Psychology, Ohio State University.
  • R Core Team (2021). R: A language and environment for statistical computing. R Foundation for Statistical Computing.
  • Rastle, K., Davis, M. H., & New, B. (2004). The broth in my brother's brothel: Morpho-orthographic segmentation in visual word recognition. Psychonomic Bulletin & Review, 11(6), 1090–1098. https://doi.org/10.3758/BF03196742
  • Revill, K. P., Aslin, R. N., Tanenhaus, M. K., & Bavelier, D. (2008). Neural correlates of partial lexical activation. Proceedings of the National Academy of Sciences, 105(35), 13111–13115. https://doi.org/10.1073/pnas.0807054105
  • Richtsmeier, P. T. (2011). Word-types, not word-tokens, facilitate extraction of phonotactic sequences by adults. Laboratory Phonology, 2(1), 157–183. https://doi.org/10.1515/labphon.2011.005
  • Scharenborg, O. (2010). Modeling the use of durational information in human spoken-word recognition. The Journal of the Acoustical Society of America, 127(6), 3758–3770. https://doi.org/10.1121/1.3377050
  • Shafaei-Bajestan, E., Moradipour-Tari, M., Uhrig, P., & Baayen, R. H. (2020). LDL-AURIS: Error-driven learning in modeling spoken word recognition (Tech. Rep.). PsyArXiv.
  • Stovitz, S. D., Pereira, M. A., Vazquez, G., Lytle, L. A., & Himes, J. H. (2008). The interaction of childhood height and childhood BMI in the prediction of young adult BMI. Obesity, 16(10), 2336–2341. https://doi.org/10.1038/oby.2008.359
  • ten Bosch, L., Boves, L., & Ernestus, M. (2013). Towards an end-to-end computational model of speech comprehension: Simulating a lexical decision task. In INTERSPEECH-2013 (pp. 2822–2826).
  • ten Bosch, L., Boves, L., & Ernestus, M. (2015). Diana, an end-to-end computational model of human word comprehension. In Proceedings of the 18th International Congress of Phonetic Sciences (ICPhS 2015) (pp. 1–4).
  • ten Bosch, L., Boves, L., Tucker, B. V., & Ernestus, M. (2015). DIANA: Towards computational modeling reaction times in lexical decision in North American English. In INTERSPEECH-2015 (pp. 1576–1580).
  • ten Bosch, L., Ernestus, M., & Boves, L. (2018). Analyzing reaction time sequences from human participants in auditory experiments. In Interspeech 2018 (pp. 971–975). ISCA.
  • Teruya, H., & Kapatsinski, V. (2019). Deciding to look: Revisiting the linking hypothesis for spoken word recognition in the visual world. Language, Cognition and Neuroscience, 34(7), 861–880. https://doi.org/10.1080/23273798.2019.1588338
  • Tomaschek, F., Hendrix, P., & Baayen, R. H. (2018). Strategies for addressing collinearity in multivariate linguistic data. Journal of Phonetics, 71(9), 249–267. https://doi.org/10.1016/j.wocn.2018.09.004
  • Tsang, Y.-K., & Chen, H.-C. (2013). Early morphological processing is sensitive to morphemic meanings: Evidence from processing ambiguous morphemes. Journal of Memory and Language, 68(3), 223–239. https://doi.org/10.1016/j.jml.2012.11.003
  • Tucker, B. V., Brenner, D., Danielson, D. K., Kelley, M. C., Nenadić, F., & Sims, M. (2019). The massive auditory lexical decision (MALD) database. Behavior Research Methods, 51(3), 1187–1204. https://doi.org/10.3758/s13428-018-1056-1
  • Vitevitch, M. S. (2002). Influence of onset density on spoken-word recognition. Journal of Experimental Psychology: Human Perception and Performance, 28(2), 270–278.https://doi.org/10.1037//0096-1523.28.2.270
  • Vitevitch, M. S., Armbruster, J., & Chu, S. (2004). Sublexical and lexical representations in speech production: Effects of phonotactic probability and onset density. Journal of Experimental Psychology: Learning, Memory, and Cognition, 30(2), 514–529.https://doi.org/10.1037/0278-7393.30.2.514
  • Vitevitch, M. S., & Luce, P. A. (1998). When words compete: Levels of processing in perception of spoken words. Psychological Science, 9(4), 325–329. https://doi.org/10.1111/1467-9280.00064
  • Vitevitch, M. S., & Luce, P. A. (2004). A web-based interface to calculate phonotactic probability for words and nonwords in english. Behavior Research Methods, Instruments, & Computers, 36(3), 481–487. https://doi.org/10.3758/BF03195594
  • Vitevitch, M. S., & Luce, P. A. (2016). Phonological neighborhood effects in spoken word perception and production. Annual Review of Linguistics, 2(1), 75–94. https://doi.org/10.1146/linguistics.2016.2.issue-1
  • Vitevitch, M. S., P. A. Luce, Charles-Luce, J., & Kemmerer, D. (1997). Phonotactics and syllable stress: Implications for the processing of spoken nonsense words. Language and Speech, 40(1), 47–62. https://doi.org/10.1177/002383099704000103
  • Vitevitch, M. S., & Rodríguez, E. (2005). Neighborhood density effects in spoken word recognition in Spanish. Journal of Multilingual Communication Disorders, 3(1), 64–73. https://doi.org/10.1080/14769670400027332
  • Vroomen, J., & de Gelder, B. (1997). Activation of embedded words in spoken word recognition. Journal of Experimental Psychology: Human Perception and Performance, 23(3), 710–720. https://doi.org/10.1037/0096-1523.23.3.710
  • Weide, R (2005). The Carnegie Mellon pronouncing dictionary [cmudict. 0.6]. Carnegie Mellon University.
  • Whalen, D. H. (1984). Subcategorical phonetic mismatches slow phonetic judgments. Perception & Psychophysics, 35(1), 49–64. https://doi.org/10.3758/BF03205924
  • Xiang, M., Harizanov, B., Polinsky, M., & Kravtchenko, E. (2011). Processing morphological ambiguity: An experimental investigation of Russian numerical phrases. Lingua, 121(3), 548–560. https://doi.org/10.1016/j.lingua.2010.10.016
  • Yap, M. J., Sibley, D. E., Balota, D. A., Ratcliff, R., & Rueckl, J. (2015). Responding to nonwords in the lexical decision task: Insights from the English Lexicon Project. Journal of Experimental Psychology: Learning, Memory, and Cognition, 41(3), 597–613.https://doi.org/10.1037/xlm0000064
  • Yates, M., Locker, L., & Simpson, G. B. (2004). The influence of phonological neighborhood on visual word perception. Psychonomic Bulletin & Review, 11(3), 452–457. https://doi.org/10.3758/BF03196594
  • You, H., & Magnuson, J. S. (2018). TISK 1.0: An easy-to-use Python implementation of the time-invariant string kernel model of spoken word recognition. Behavior Research Methods, 50(3), 871–889. https://doi.org/10.3758/s13428-017-1012-5

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.