279
Views
2
CrossRef citations to date
0
Altmetric
Articles

Network approach to modelling and analysing failure propagation in high-speed train systems

, , &
Pages 529-545 | Received 19 Jan 2021, Accepted 15 Jun 2021, Published online: 10 Jul 2021

References

  • Ahmed, U., Ha, D., An, J., Zahid, U., & Han, C. H. (2017). Fault propagation path estimation in NGL fractionation process using principal component analysis. Chemometrics and Intelligent Laboratory Systems, 162, 73–82. https://doi.org/10.1016/j.chemolab.2017.01.006
  • Baouya, A., Mohamed, O. A., Bennouar, D., & Ouchani, S. (2019). Safety analysis of train control system based on model-driven design methodology. Computers in Industry, 105, 1–16. https://doi.org/10.1016/j.compind.2018.10.007
  • Cai, Z. S., Hu, J. Q., Zhang, L. B., & Ma, X. (2015). Hierarchical fault propagation and control modeling for the resilience analysis of process system. Chemical Engineering Research and Design, 103, 50–60. https://doi.org/10.1016/j.cherd.2015.07.024
  • Chen, H. T., Jiang, B., & Lu, N. Y. (2019). A newly robust fault detection and diagnosis method for high-speed trains. IEEE Transactions on Intelligent Transportation Systems, 20(6), 2198–2208. https://doi.org/10.1109/TITS.2018.2865410
  • Council Directive 96/48/EC. (1996, July 23). Interoperability of the trans-European high speed rail system. Commission of the European Communities.
  • Crucitti, P., Latora, V., & Marchiori, M. (2004). Model for cascading failures in complex networks. Physical Review E, 69(4), 04510401–04510404. https://doi.org/10.1103/PhysRevE.69.045104
  • Deng, X. Q., Yang, Q. M., Zhang, Y., Li, Y. S., & Lu, Z. (2019). Risk propagation mechanisms and risk management strategies for a sustainable perishable products supply chain. Computers & Industrial Engineering, 135, 1175–1187. https://doi.org/10.1016/j.cie.2019.01.014
  • Dobson, I. (2012). Estimating the propagation and extent of cascading line outages from utility data with a branching process. IEEE Transactions on Power Systems, 27(4), 2146–2155. https://doi.org/10.1109/TPWRS.2012.2190112
  • Fan, W. L., Liu, Z. G., Hu, P., & Mei, S. W. (2016). Cascading failure model in power grids using the complex network theory. IET Generation Transmission & Distribution, 10(15), 3940–3949. https://doi.org/10.1049/iet-gtd.2016.0692
  • Fan, Y. X., Li, Z., Pei, J. J., Li, H. Y., & Sun, J. (2015). Applying systems thinking approach to accident analysis in China: Case study of ‘7.23’ Yong-Tai-Wen high-speed train accident. Safety Science, 76, 190–201. https://doi.org/10.1016/j.ssci.2015.02.017
  • Feng, D., Lin, S., Sun, X. J., & He, Z. Y. (2018). Reliability assessment for traction power supply system based on quantification of margins and uncertainties. Microelectronics Reliability, 88–90, 1195–1200. https://doi.org/10.1016/j.microrel.2018.06.032
  • Fu, X. W., Yao, H. Q., & Yang, Y. S. (2019). Cascading failures in wireless sensor networks with load redistribution of links and nodes. Ad Hoc Networks, 93, Article 101900. https://doi.org/10.1016/j.adhoc.2019.101900
  • Gao, R. Z., Wang, Y. J., Lai, J. F., & Gao, H. (2016). Neuro-adaptive fault-tolerant control of high speed trains under traction-braking failures using self-structuring neural networks. Information Sciences, 367–368, 449–462. https://doi.org/10.1016/j.ins.2016.05.033
  • Gao, Z. K., Fang, P. C., Ding, M. S., & Jin, N. D. (2015). Multivariate weighted complex network analysis for characterizing nonlinear dynamic behavior in two-phase flow. Experimental Thermal and Fluid Science, 60, 157–164. https://doi.org/10.1016/j.expthermflusci.2014.09.008
  • Guo, J. M., Qi, J. P., & Li, X. Y. (2019). Reliability analysis of emus braking systems with fuzzy dynamic fault tree. China Mechanical Engineering, 30(13), 1585–1589. https://doi.org/10.3969/j.issn.1004-132X.2019.13.010
  • Guo, N., Guo, P., Dong, H. Y., Zhao, J., & Han, Q. Y. (2019). Modeling and analysis of cascading failures in projects: A complex network approach. Computers & Industrial Engineering, 127, 1–7. https://doi.org/10.1016/j.cie.2018.11.051
  • Harris, T. E. (2002). The theory of branching processes. Courier Corporation.
  • Hong, M., Wang, Q., Su, Z. Q., & Cheng, L. (2014). In situ health monitoring for bogie systems of CRH380 train on Beijing–Shanghai high-speed railway. Mechanical Systems and Signal Processing, 45(24), 378–395. https://doi.org/10.1016/j.ymssp.2013.11.017
  • Hong, N., Li, L. S., Yao, W. R., Zhao, Y., Yi, C., Lin, J. H., & Tsui, K. L. (2020). High-speed rail suspension system health monitoring using multi-location vibration data. IEEE Transactions on Intelligent Transportation Systems, 21(7), 2943–2955. https://doi.org/10.1109/TITS.2019.2921785
  • Hu, Y. X., Lin, J. H., & Chit Tan, A. (2019). Failure analysis of gearbox in CRH high-speed train. Engineering Failure Analysis, 105, 110–126. https://doi.org/10.1016/j.engfailanal.2019.06.099
  • Isaac, H. F., & Leonardo, D. O. (2013). Probabilistic study of cascading failures in complex interdependent lifeline systems. Reliability Engineering & System Safety, 111, 260–272. https://doi.org/10.1016/j.ress.2012.10.012
  • Jenkins, B. M., Butterworth, B. R., & Clair, J. F. (2010). The 1995 attempted derailing of the French TGV (high-speed train) and a quantitative analysis of 181 rail sabotage attempts (MTI Report 09-12).
  • Juan, W. X., Ze, G. S., Lei, J., & Zhen, W. (2017). Percolation-cascading in multilayer heterogeneous network with different coupling preference. Physica A: Statistical Mechanics and Its Applications, 471, 233–243. https://doi.org/10.1016/j.physa.2016.11.051
  • Kim, J., & Dobson, I. (2010). Approximating a loading-dependent cascading failure model with a branching process. IEEE Transactions on Reliability, 59(4), 691–699. https://doi.org/10.1109/TR.2010.2055928
  • Lee, D., Kahng, B., Cho, Y. S., Goh, K. I., & Lee, D. S. (2018). Recent advances of percolation theory in complex networks. Journal of the Korean Physical Society, 73(2), 152–164. https://doi.org/10.3938/jkps.73.152
  • Li, D. Q., Zhang, Q., Zio, E., Havlin, S., & Kang, R. (2015). Network reliability analysis based on percolation theory. Reliability Engineering & System Safety, 142, 556–562. https://doi.org/10.1016/j.ress.2015.05.021
  • Li, J., Shi, C. L., Chen, C. K., & Duenas-Osorio, L. (2018). A cascading failure model based on AC optimal power flow: Case study. Physica A: Statistical Mechanics and Its Applications, 508, 313–323. https://doi.org/10.1016/j.physa.2018.05.081
  • Li, T. Y., Wang, S. P., Shi, H., Zio, E., & Cui, X. Y. (2020). An energy-based coupling degradation propagation model and its application to aviation actuation system. Chinese Journal of Aeronautics, 33(4), 1288–1298. https://doi.org/10.1016/j.cja.2019.11.012
  • Lin, S., Jia, L., & Wang, Y. (2019). Safety assessment of complex electromechanical systems based on hesitant interval-valued intuitionistic fuzzy theory. International Journal of Fuzzy Systems, 21(8), 2405–2420. https://doi.org/10.1007/s40815-019-00729-4
  • Lin, S., Jia, L., Wang, Y., & Zhang, H. (2020). A new function-topology-based method for assessing passive safety of mechatronics systems. IEEE Access, 8, 9312–9324. https://doi.org/10.1109/ACCESS.2020.2965588
  • Lin, S., Wang, Y., Jia, L., & Zhang, H. (2018). Reliability assessment of complex electromechanical systems: A network perspective. Quality and Reliability Engineering International, 34(5), 772–790. https://doi.org/10.1002/qre.2289
  • Lin, S., Wang, Y., Jia, L., Zhang, H., & Li, Y. (2018). Intuitionistic mechanism for weak components identification method of complex electromechanical system. Journal of Intelligent & Fuzzy Systems, 34(1), 583–598. https://doi.org/10.3233/JIFS-17807
  • Liu, X., & Zhai, W. (2014). Analysis of vertical dynamic wheel/rail interaction caused by polygonal wheels on high-speed trains. Wear, 314(1–2), 282–290. https://doi.org/10.1016/j.wear.2013.11.048
  • Liu, X. F., & An, S. Q. (2014). Failure propagation analysis of aircraft engine systems based on complex network. Procedia Engineering, 80, 506–521. https://doi.org/10.1016/j.proeng.2014.09.108
  • Lu, H. R., Hu, Y. L., Yin, R. R., & Deng, Y. J. (2017). Cascading failure model of scale-free topology for avoiding node failure. Neurocomputing, 260(18), 443–448. http://doi.org/10.1016/j.neucom.2017.04.042
  • Lu, Y. H., Zheng, H. Y., Zeng, J., Chen, T. L., & Wu, P. B. (2019). Reliability assessment of passive systems using artificial neural network based response surface methodology. Reliability Engineering & System Safety, 188, 221–232. https://doi.org/10.1016/j.ress.2019.03.033
  • Motter, A. E., & Lai, Y. C. (2002). Cascade-based attacks on complex networks. Physical Review E, 66(6), 06510201–06510204. http://doi.org/10.1103/PhysRevE.66.065102
  • Newman, M. E. J. (2001). Scientific collaboration networks. II. Shortest paths, weighted networks, and centrality. Physical Review E, 64(1), 01613201–01613207. http://doi.org/10.1103/PhysRevE.64.025102
  • Newman, M. E. J. (2005). A measure of betweenness centrality based on random walks. Social Networks, 27(1), 39–54. https://doi.org/10.1016/j.socnet.2004.11.009
  • Nie, S. H., Ding, L., Huang, M. Y., & Hu, P. (2019). A novel dynamic model on power failure propagation and its application to load shedding optimization. Physics Letters A, 383(18), 2159–2167. https://doi.org/10.1016/j.physleta.2019.04.030
  • Niu, G., Xiong, L. J., Qin, X. X., & Pecht, M. (2019). Fault detection isolation and diagnosis of multi-axle speed sensors for high-speed trains. Mechanical Systems and Signal Processing, 131, 183–198. https://doi.org/10.1016/j.ymssp.2019.05.053
  • Ren, H. P., Song, J. H., Yang, R., Baptista, M. S., & Grebogi, C. (2016). Cascade failure analysis of power grid using new load distribution law and node removal rule. Physica A: Statistical Mechanics and its Applications, 442, 239–251. https://doi.org/10.1016/j.physa.2015.08.039
  • Sarkar, M. K., Ahmed, G. F., Uddin, A. J., Hena, M. H., Rahman, M. A., & Kabiraj, R. (2014). Wireless cellular network for high speed (up to 500 km/h) vehicles. Journal of Electronics and Communication Engineering, 9(1), 1–9. http://doi.org/10.9790/2834-09130109
  • Shi, J. Y., Fang, R. M., Lu, X. F., & Liang, Y. (2013). Analysis on failure propagation characteristics of doubly-fed induction wind power generation system based on small-world network. High Voltage Apparatus, 49(2), 25–29. http://doi.org/10.3327/jnst.25.404
  • Strogatz, S. H. (2001). Exploring complex networks. Nature, 410(6825), 268–276. https://doi.org/10.1038/35065725
  • Su, L. Y., Ma, L., Qin, N., Huang, D. Q., & Kemp, A. H. (2019). Fault diagnosis of high-speed train bogie by residual-squeeze net. IEEE Transactions on Industrial Informatics, 15(7), 3856–3863. https://doi.org/10.1109/TII.2019.2907373
  • Sun, Z., Zhang, Y., Guo, D., Yang, G., & Liu, Y. (2014). Research on running stability of CRH3 high speed trains passing by each other. Engineering Applications of Computational Fluid Mechanics, 8(1), 140–157. https://doi.org/10.1080/19942060.2014.11015504
  • Tang, L., Jing, L., He, J., & Stanley, H. E. (2016). Robustness of assembly supply chain networks by considering risk propagation and cascading failure. Physica A: Statistical Mechanics and its Applications, 459, 129–139. https://doi.org/10.1016/j.physa.2016.04.030
  • Vithanage, R. K., Harrison, C. S., & DeSilva, A. K. (2019). Importance and applications of robotic and autonomous systems (RAS) in railway maintenance sector: A review. Computers, 8(3), 5601–5616. https://doi.org/10.3390/computers8030056
  • Wang, J. (2013). Mitigation strategies on scale-free networks against cascading failures. Physica A: Statistical Mechanics and Its Applications, 392(9), 2257–2264. https://doi.org/10.1016/j.physa.2013.01.013
  • Wang, J., Rong, L., Zhang, L., & Zhang, Z. (2008). Attack vulnerability of scale-free networks due to cascading failures. Physica A: Statistical Mechanics and Its Applications, 387(26), 6671–6678. https://doi.org/10.1016/j.physa.2008.08.037
  • Wang, R. X., Gao, J. M., Gao, Z. Y., Gao, X., & Jiang, H. Q. (2016). Complex network theory-based condition recognition of electromechanical system in process industry. Science China: Technological Sciences, 59(4), 604–617. https://doi.org/10.1007/s11431-016-6025-2
  • Wang, W., Tang, M., Stanley, H. E., & Braunstein, L. A. (2017). Unification of theoretical approaches for epidemic spreading on complex networks. Reports on Progress in Physics, 80(3), 03660301–03660316. https://doi.org/10.1088/1361-6633/aa5398
  • Wang, Y., Bi, L., Lin, S., Li, M., & Shi, H. (2017). A complex network-based importance measure for mechatronics systems. Physica A: Statistical Mechanics and its Applications, 466, 180–198. https://doi.org/10.1016/j.physa.2016.09.006
  • Wang, Z., Andrews, M. A., Wu, Z. X., Wang, L., & Bauch, C. T. (2015). Coupled disease-behavior dynamics on complex networks: A review. Physics of Life Reviews, 15, 1–29. https://doi.org/10.1016/j.plrev.2015.07.006
  • Xu, Y. F., Wang, Z., Jiang, Y., Yang, Y. X., & Wang, F. (2019). Small-world network analysis on fault propagation characteristics of water networks in eco-industrial parks. Resources, Conservation and Recycling, 149, 343–351. https://doi.org/10.1016/j.resconrec.2019.05.040
  • Yeom, Y. T., Kim, M. S., Kim, H. J., Song, S. J., Lee, H. Y., Kwon, S. D., & Sung, D. Y. (2019). A study on depth sizing for surface cracks in KTX brake disc using Rayleigh wave. Advances in Materials Science and Engineering, 2019, Article 6041709. https://doi.org/10.1155/2019/6041709
  • Zang, T. L., Gao, S. B., Liu, B. X., Huang, T., & Wei, X. G. (2019). Integrated fault propagation model based vulnerability assessment of the electrical cyber-physical system under cyber attacks. Reliability Engineering & System Safety, 189, 232–241. https://doi.org/10.1016/j.ress.2019.04.024
  • Zeng, Y., & Xiao, R. (2014). Modelling of cluster supply network with cascading failure spread and its vulnerability analysis. International Journal of Production Research, 52(23), 6938–6953. https://doi.org/10.1080/00207543.2014.917769
  • Zhang, B., Tan, A. C. C., & Lin, J. H. (2016). Gearbox fault diagnosis of high-speed railway train. Engineering Failure Analysis, 66, 407–420. https://doi.org/10.1016/j.engfailanal.2016.04.020
  • Zhang, Y. R., Arenas, A., & Yagan, O. (2018). Cascading failures in interdependent systems under a flow redistribution model. Physical Review E, 97(2), 02230701–02230713. http://doi.org/10.1103/PhysRevE.97.022307
  • Zhang, Z. K., Liu, C., Zhan, X. X., Lu, X., Zhang, C. X., & Zhang, Y. C. (2016). Dynamics of information diffusion and its applications on complex networks. Physics Reports: Review Section of Physics Letters, 651, 1–34. http://doi.org/10.1016/j.physrep.2016.07.002
  • Zhou, Y., & Wang, J. (2018). Efficiency of complex networks under failures and attacks: A percolation approach. Physica A: Statistical Mechanics and its Applications, 512, 658–664. https://doi.org/10.1016/j.physa.2018.08.093

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.