37
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Planning centralised logistics of products with specific characteristics under extreme situations, sudden changes and dynamic conditions

ORCID Icon

References

  • Altinoz, M., & Altinoz, O. T. (2023). Multiobjective problem modeling of the capacitated vehicle routing problem with urgency in a pandemic period. Neural Computing and Applications, 35(5), 3865–3882. https://doi.org/10.1007/s00521-022-07921-y
  • Andersen, T., Belward, S., Sankupellay, M., Myers, T., & Chen, C. (2024). Reoptimisation strategies for dynamic vehicle routing problems with proximity-dependent nodes. TOP, 32(1), 1–21. https://doi.org/10.1007/s11750-023-00656-6
  • Aristotelous, M., & Nearchou, A. C. (2024). An empirical analysis of a set of hybrid heuristics for the solution of the resource leveling problem. Operations Research Forum, 5(6), 2–26. https://doi.org/10.1007/s43069-023-00283-8
  • Christofides, N., & Eilon, S. (1969). An algorithm for the vehicle-dispatching problem. Journal of the Operational Research Society, 20(3), 309–318. https://doi.org/10.1057/jors.1969.75
  • Creput, J.-C., Hajjam, A., Koukam, A., & Kuh, O.. (2011). Dynamic Vehicle Routing Problem for Medical Emergency Management. In Self Organizing Maps - Applications and Novel Algorithm Design. InTech. https://doi.org/10.5772/14346
  • Croes, G. A. (1958). A method for solving traveling-salesman problems. Operations Research, 6(6), 791–812. https://doi.org/10.1287/opre.6.6.791
  • Dastpak, M., Errico, F., & Jabali, O. (2023). Off-line approximate dynamic programming for the vehicle routing problem with a highly variable customer basis and stochastic demands. Computers & Operations Research, 159(2023), 1–12. https://doi.org/10.1016/j.cor.2023.106338
  • Eren, E., & Tuzkaya, U. R. (2021). Safe distance-based vehicle routing problem: Medical waste collection case study in COVID-19 pandemic. Computers & Industrial Engineering, 157(2021), 1–10. https://doi.org/10.1016/j.cie.2021.107328
  • Gamchi, N. S., Torabi, S. A., & Jolai, F. (2021). A novel vehicle routing problem for vaccine distribution using SIR epidemic model. OR Spectrum, 43(1), 155–188. https://doi.org/10.1007/s00291-020-00609-6
  • Giordano, G., Blanchini, F., Bruno, R., Colaneri, P., Di Filippo, A., Di Matteo, A., & Colaneri, M. (2020). Modelling the COVID-19 epidemic and implementation of population-wide interventions in Italy. Nature Medicine, 26(6), 855–860. https://doi.org/10.1038/s41591-020-0883-7
  • Grippa, P. (2016). Decision making in a UAV-based delivery system with impatient customers. Proceedings of the intelligent robots and systems (IROS), Daejeon, South Korea, pp. 9–14. 09-14 October 2016. https://doi.org/10.1109/IROS.2016.7759739
  • Haitam, E., Najat, R., & Abouchabaka, J. (2021). A vehicle routing problem for the collection of medical samples at home: Case study of Morocco. International Journal of Advanced Computer Science and Applications, 12(4), 345–351. http://doi.org/10.14569/IJACSA.2021.0120443
  • Ju, B., Kim, M., & Moon, I. (2021). Vehicle routing problem considering reconnaissance and transportation. Sustainability, 13(6), 1–19. https://doi.org/10.3390/su13063188
  • Kallrath, J. (2005). Online storage systems and transportation problems with applications (Vol. 91, pp. 57–120). New York, NY: Springer. https://doi.org/10.1007/0-387-23485-3_4
  • Kermack, W., & McKendrick, A. (1991). A contribution to the mathematical theory of epidemics. Bulletin of Mathematical Biology, 53(1–2), 33–55. https://doi.org/10.1098/rspa.1927.0118
  • Korte, B., & Vygen, J. (2021). Combinatorial optimization. Berlin, Heidelberg: Springer.
  • Kronmüller, M., Fielbaum, A., & Alonso-Mora, J. (2023). Online flash delivery from multiple depots. Transportation Letters, 1–17. Advance online publication. https://doi.org/10.1080/19427867.2023.2278859
  • Kucharska, E. (2019). Dynamic vehicle routing problem—Predictive and unexpected customer availability. Symmetry, 11(4:546), 1–20. https://doi.org/10.3390/sym11040546
  • Liu, M., Zhao, Q., Song, Q., & Zhang, Y. (2023). A hybrid brain storm optimization algorithm for dynamic vehicle routing problem With time windows. IEEE Access, 11, 121087–121095. https://doi.org/10.1109/ACCESS.2023.3328404
  • Luo, J. Y., Wang, J. Y., & Yu, H. (2011). A dynamic vehicle routing problem for medical supplies in large-scale emergencies. 6th IEEE joint international information technology and artificial intelligence conference, pp. 271–275. 20-22 August 2011. https://doi.org/10.1109/ITAIC.2011.6030202
  • Miao, S., Pan, Q., Zheng, D., & Mohi-ud-din, G. (2024). Unmanned aerial vehicle intrusion detection: Deep-meta-heuristic system. Vehicular Communications, 46(2024), 1–20. https://doi.org/10.1016/j.vehcom.2024.100726
  • Novoa, C., & Storer, R. (2009). An approximate dynamic programming approach for the vehicle routing problem with stochastic demands. European Journal of Operational Research, 196(2), 509–515. https://doi.org/10.1016/j.ejor.2008.03.023
  • Osman, I. (1994). Capacitated clustering problems by hybrid simulated annealing and Tabu search. International Transactions in Operational Research, 1(3), 317–336. https://doi.org/10.1111/1475-3995.d01-43
  • Pillac, V., Gendreau, M., Guéret, C., & Medaglia, A. L. (2013). A review of dynamic vehicle routing problems. European Journal of Operational Research, 225(1), 1–11. https://doi.org/10.1016/j.ejor.2012.08.015
  • Qiu, R., Ding, J., Zhang, Z., Han, P., Wu, H., & Wu, J. (2024). Pseudo-metric modelling of distribution network state estimation based on CNN-BiLSTM network and customized HGGA algorithm. Measurement, 227(2024), 1–15. https://doi.org/10.1016/j.measurement.2024.114223
  • Singh, B., Huang, H.-C., Morton, D. P., Johnson, G. P., Gutfraind, A., Galvani, A. P., Clements, B., & Meyers, L. A. (2015). Optimizing distribution of pandemic influenza antiviral drugs. Emerging Infectious Diseases, 21(2), 251–258. https://doi.org/10.3201/eid2102.141024
  • Sun, K., Gu, Y., Wan Fei Ma, K., Zheng, C., & Wu, F. (2024). Medical supplies delivery route optimization under public health emergencies incorporating metro-based logistics system. Transportation Research Record: Journal of the Transportation Research Board. Advance online publication. https://doi.org/10.1177/03611981231223287
  • Sun, L., & Wang, B. (2016). An inverse robust optimisation approach for a class of vehicle routing problems under uncertainty. Discrete Dynamics in Nature and Society, 2016, 1–12. https://doi.org/10.1155/2016/2804525
  • Sze, J. F., Salhi, S., & Wassan, N. (2024). An adaptive variable neighbourhood search approach for the dynamic vehicle routing problem. Computers & Operations Research, 164(2024), 1–12. https://doi.org/10.1016/j.cor.2024.106531
  • Wang, S. R., & Huang, Q. (2022). A hybrid code genetic algorithm for VRP in public–private emergency collaborations. International Journal of Simulation Modelling, 21(1), 124–135. https://doi.org/10.2507/IJSIMM21-1-595
  • Wang, T., Wu, D., & Zhao, W. (2023). Minimizing indirect contacts in urban pick-Up and delivery services during COVID-19 pandemic. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 53(12), 7876–7887. https://doi.org/10.1109/TSMC.2023.3299933
  • Yu, B., Yang, Z. Z., & Yao, B. (2009). An improved ant colony optimization for vehicle routing problem. European Journal of Operational Research, 196(1), 171–176. https://doi.org/10.1016/j.ejor.2008.02.028
  • Zhang, X., Sang, H., Li, Z., Zhang, B., & Meng, L. (2024). An efficient discrete artificial bee colony algorithm with dynamic calculation method for solving the AGV scheduling problem of delivery and pickup. Complex & Intelligent Systems, 10(1), 37–57. https://doi.org/10.1007/s40747-023-01153-w
  • Zheng, Q., Zhang, Y., Tian, H., & He, L. (2023). A cooperative adaptive genetic algorithm for reentrant hybrid flow shop scheduling with sequence-dependent setup time and limited buffers. Complex & Intelligent Systems, 10(1), 781–809. https://doi.org/10.1007/s40747-023-01147-8
  • Zhongzhen, Y., Guo, L., & Yang, Z. (2019). Emergency logistics for wildfire suppression based on forecasted disaster evolution. Annals of Operations Research, 283(1), 917–937. https://doi.org/10.1007/s10479-017-2598-9

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.