323
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

Challenges and solutions in automotive powertrain systems

, , , &
Pages 61-93 | Received 14 Sep 2017, Accepted 26 Oct 2017, Published online: 20 Nov 2017

References

  • Carlsson, P. (2007). Flow through a throttle body: A comparative study of heat transfer, wall surface roughness and discharge coefficient (PhD thesis). Link\"{o}ping University, Linköping, Sweden.
  • Chen, H., Guo, L., Qu, T., Gao, B., & Wang, F. (2016). Optimal control methods in intelligent vehicles. Journal of Control and Decision, 4(1), 32–56.
  • Cook, J. A., Sun, J., Buckland, J. H., Kolmanovsky, I. V., Peng, H., & Grizzle, J. W. (2006). Automotive powertrain control-a survey. Asian Journal of Control, 83, 237–260.
  • Corti, E., & Forte, C. (2010). A statistical approach to spark advance mapping. Journal of Engineering for Gas Turbines and Power, 132(8), 082803.
  • Corti, E., & Forte, C. (2011). Spark advance real-time optimization based on combustion analysis. ASME Journal of Engineering for Gas Turbines and Power, 133, 092804.1–092804.8.
  • Ehsani, M., Gao, Y., Gay, S. E., & Emadi, A. (2005). Modern electric, hybrid electric, and fuel cell vehicles, fundamentals, theory, and design (2nd ed.). Boca Raton, FL: CRC Press LLC.
  • Eriksson, L., & Nielsen, L. (2014). Modeling and control of engines and drivelines. Chichester: Wiley.
  • Fan, J., Wu, Y., Ohata, A., & Shen, T. (2016). Conservation law-based air mass flow calculation in engine intake systems. Science China Information Sciences, 59(11), 142–153.
  • Gao, J., Wu, Y., & Shen, T. (2016). Experimental comparisons of hypothesis test and moving average based combustion phase controllers. ISA Transactions, 65, 504–515.
  • Gao, J., Wu, Y., & Shen, T. (2017a). A statistical combustion phase control approach of SI engines. Mechanical Systems and Signal Processing, 85, 218–235.
  • Gao, J., Zhang, Y., & Shen, T. (2017b). An on-board calibration scheme for map-based combustion phase control of spark-ignition engines. IEEE/ASME Transactions on Mechatronics, 22(4), 1485–1496.
  • Guardiola, C., Pla, B., Blanco-Rodriguez, D., & Cabrera, P. (2013). A learning algorithm concept for updating look-up tables for automotive applications. Mathematical and Computer Modelling, 57(7), 1979–1989.
  • Guzzella, L., & Onder, C. H. (2004). Introduction to modeling and control of internal combustion engine systems. Berlin: Springer.
  • Hairer, E., Lubich, C., & Wanner, G. (2006). Geometric numerical integration: Structure-preserving algorithms for ordinary differential equations (pp. 204–211). Berlin: Springer Science & Business Media.
  • Hale, J. K., & Lunel, S. M. (1993). Introduction to functional differential equations. New York, NY: Springer-Verlag.
  • Hendricks, E., & Sorenson, S. C. (1990). Mean value modeling of spark ignition engines. Journal of Engines, SP-1149(900616), 1359–1373. SAE Paper.
  • Heywood, J. B. (1988). Internal combustion engine fundamentals. New York, NY: Mcgraw-Hill.
  • Hockerdal, E., Frisk, E., & Eriksson, L. (2011). EKF-based adaptation of look-up tables with an air mass-flow sensor application. Control Engineering Practice, 19(5), 442–453.
  • Hong, M., Shen, T., Ouyang, M., & Kako, J. (2011). Torque observers design for spark ignition engines with different intake air measurement sensors. IEEE Transactions on Control Systems Technology, 19(1), 229–237.
  • Hrovat, D., Colvin, D., & Powell, B. K. (1998). Comments on ‘applications of some new tools to robust stability analysis of spark ignition engine: A case study’. IEEE Transactions on Control Systems Technology, 6(3), 435–436.
  • Jones, J. C. P., & Muske, K. R. (2009). Identification and adaptation of linear look-up table parameters using an efficient recursive least-squares technique. ISA Transactions, 48(4), 476–483.
  • Jones, J. C. P., Spelina, J. M., & Frey, J. (2013). Likelihood-based control of engine knock. IEEE Transactions on Control Systems Technology, 21(6), 2169–2180.
  • Kang, M. (2013). A torque demand strategy of IC engines for fuel consumption improvement using traffic information. In IFAC Proceedings Volumes of 7th IFAC Symposium on Advances in Automotive Control, 46(21), 700–705.
  • Kang, M., & Shen, T. (2015). Nonlinear model predictive torque control for IC engines. In Proceeding of 11th World Congress on Intelligent Control and Automation, 67(1), 804–809.
  • Kang, M., & Shen, T. (2016). Receding horizon online optimization for torque control of gasoline engines. ISA Transactions, 65, 371–383.
  • Kang, M., Wu, Y., & Shen, T. (2017). Logical control approach to fuel efficiency optimization for commuting vehicles. International Journal of Automotive Technology, 18(3), 535–546.
  • Lehrheuer, B., Pischinger, S., Wick, M., Andert, J., Berneck, D., Ritter, D., ... Thewes, M. (2016). A study on in-cycle combustion control for gasoline controlled autoignition (No. 2016–01-0754). SAE Technical Paper.
  • Li, P., Shen, T., Junichi, K., & Liu, K. (2009). Cyclic moving average control approach to cylinder pressure and its experimental validation. Journal of Control Theory and Applications, 7(4), 345–351.
  • Makowicki, T., Bitzer, M., Grodde, S., & Graichen, K. (2017). Cycle-by-cycle optimization of the combustion during transient engine operation. IFAC World Congress. Toulouse.
  • Makowicki, T., Bitzer, M., Kotman, P., & Graichen, K. (2016). A combustion cycle model for stationary and transient engine operation. IFAC Papersonline, 49(11), 469–475.
  • Malikopoulos, A. (2008). Real-time, self-learning identification and stochastic optimal control of advanced powertrain systems (Doctoral dissertation). Ann Arbor, MI: The University of Michigan.
  • Mehrani, P., & Watson, H. C. (2007). Modeling the effects of mixture composition on cyclic variability. In SAE World Congress & Exhibition (Vol. 135, pp. 111–137), Detroit, MI.
  • Ohata, A. (2013). Physical turbocharger model on high level model descrition (HLMD). In Proceedings of the 7th IFAC Symposium on Advances in Automotive Control (pp. 289–294). Tokyo.
  • Ohtsuka, T. (2004). A continuation/gmres method for fast computation of nonlinear receding horizon control. Automatica, 40(4), 563–574.
  • Ozdor, N., Dulger, M., & Sher, E. (1994). Cyclic variability in spark ignition engines -- A literature survey. SAE Technical Papers No. 940987, Detroit, MI.
  • Pipitone, E. (2014). Spark ignition feedback control by means of combustion phase indicators on steady and transient operation. Journal of Dynamic Systems Measurement & Control, 136(136), 562–576.
  • Rizzoni, G., & Onori, S. Optimal energy management of hybrid electric vehicles: 15 years of development at the Ohio State University. In Proceeding of the 2012 IFAC Workshop on Engine and Powertrain Control, Simulation and Modeling (ECOSM12), 23–25 October (pp. 177-185). Rueil-Malmaison, France.
  • Sata, K., Azuma, S., & Ohata, A. (2016). A study of numerical error caused by parallelizing complicated continuous-time models with dependence on calculation order. Proceedings of 35th Chinese Control Conference, 27--29 July, Chengdu.
  • Sciarretta, A., Serrao, L., Dewangan, P. C., Tona, P., Bergshoeff, E. N. D., Bordons, C., ... Wu, M. (2014). A control benchmark on the energy management of a plug-in hybrid electric vehicle. Control Engineering Practice, 29(6), 287–298.
  • Serrao, L., Onori, S., & Rizzoni, G. (2011). A comparative analysis of energy management strategies for hybrid electric vehicles. ASME Journal of Dynamic Systems, Measurement, and Control, 133, 031012-1–031012-9.
  • Shen, T., Zhang, J., Jiao, X., Kang, M., Kako, J., & Ohata, A. (2015). Transient control of gasoline engines. Boca Raton, FL: CRC Press.
  • Shen, X., Zhang, Y., Shen, T., & Khajorntraidet, C. (2017). Spark advance self-optimization with knock probability threshold for lean-burn operation mode of SI engine. Energy, 122, 1–10.
  • Stefanopoulou, A. G., Cook, J. A., Grizzle, J. W., & Freudenberg, J. S. (1998). Control-oriented model of a dual equal variable cam timing spark ignition engine. Journal of Dynamic Systems Measurement & Control, 120(2), 257–266.
  • Stotsky, A., Egardt, B., & Eriksson, S. (2000). Variable structure control of engine idle speed with estimation of unmeasurable disturbances. Journal of Dynamic Systems Measurement & Control, 122, 599–603.
  • Taylor, A. M. (2008). Science review of internal combustion engines. Energy Policy, 36(12), 4657–4667.
  • Thomasson, A., Shi, H., Lindell, T., Eriksson, L., Shen, T., & Jones, J. C. P. (2016). Experimental validation of a likelihood-based stochastic knock controller. IEEE Transactions on Control Systems Technology, 24(4), 1407–1418.
  • Watanabe, S., & Kako, J. (2014). Benchmark problem for boundary modeling and near boundary operation control. Journal of The Society of Instrument and Control Engineers, 53(8), 677–682.
  • Watanabe, S., & Ohata, A. (2014). Benchmark problem for near boundary operation control for automotive engine. In Proceeding of 6th Conference on Simulation and Testing for Automotive Electronics (pp. 101-110).
  • Wu, Y., Kumar, M., & Shen, T. (2016). A stochastic logical system approach to model and optimal control of cyclic variation of residual gas fraction in combustion engines. Applied Thermal Engineering, 93, 251–259.
  • Wu, Y., & Shen, T. (2015). An algebraic expression of finite horizon optimal control algorithm for stochastic logical dynamical systems. Systems & Control Letters, 82, 108–114.
  • Wu, Y., & Shen, T. (2017). Policy iteration approach to control residual gas fraction in IC engines under the framework of stochastic logical dynamics. IEEE Transactions on Control Systems Technology, 25(3), 1100–1107.
  • Xu, F., Chen, H., Gong, X., & Mei, Q. (2015). Fast nonlinear model predictive control on FPGA using particle swarm optimization. IEEE Transactions on Industrial Electronics, 63(1), 310–321.
  • Yang, J., Shen, T., & Jiao, X. (2014). Model-based stochastic optimal air-fuel ratio control with residual gas fraction of spark ignition engines. IEEE Transactions on Control Systems Technology, 22(3), 896–910.
  • Zhang, J., Gao, J., & Shen, T. (2017). Adaptive idling control scheme and its experimental validation for gasoline engines. Science China Information Sciences, 60(2), 022203.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.