327
Views
9
CrossRef citations to date
0
Altmetric
Articles

A survey on distributed optimisation approaches and applications in smart grids

, , , &
Pages 41-60 | Received 31 Aug 2018, Accepted 12 Nov 2018, Published online: 27 Nov 2018

References

  • Ardakanian, O., Keshav, S., & Rosenberg, C. (2014). Real-time distributed control for smart electric vehicle chargers: From a static to a dynamic study. IEEE Transactions on Smart Grids, 5(5), 2295–2305. doi: 10.1109/TSG.2014.2327203
  • Chen, G., Li, C., & Dong, Z. (2017). Parallel and distributed computation for dynamical economic dispatch. IEEE Transactions on Smart Grids, 8(2), 1026–1027.
  • Cheng, Z., Duan, J., & Chow, M.-Y. (2018). To centralize or to distribute: That is the question: A comparison of advanced microgrid management systems. IEEE Industrial Electronics Magazines, 12(1), 6–24. doi: 10.1109/MIE.2018.2789926
  • Deng, R., Yang, Z., Chow, M.-Y., & Chen, J. (2015). A survey on demand response in smart grids: Mathematical models and approaches. IEEE Transactions on Industrial Informatics, 11(3), 570–582. doi: 10.1109/TII.2015.2414719
  • Duan, R., & Deconinck, G. (2008). Agent coordination for supply and demand match in microgrids with auction mechanism. In Proceedings of the international conference infrastructure systems and services: Building networks for a brighter future (pp. 1–4).
  • Ericson, T. (2009). Direct load control of residential water heaters. Energy Policy, 37(9), 3502–3512. doi: 10.1016/j.enpol.2009.03.063
  • Facchinei, F., & Kanzow, C. (2010). Generalized Nash equilibrium problems. Annals of Operations Research, 175(1), 177–211. doi: 10.1007/s10479-009-0653-x
  • Fukuyama, Y., & Ueki, Y. (1994). An application on neural network to dynamic dispatch using multi processors. IEEE Transactions on Power Systems, 8(4), 1299–1307.
  • Granelli, G. P., Marannino, P., Montagna, M., & Silvestri, A. (1989). Fast and efficient gradient projection algorithm for dynamic generation dispatching. IEE Proceedings C-Generation, Transmission and Distribution, 136(5), 295–302. doi: 10.1049/ip-c.1989.0039
  • Guo, F., Wen, C., Mao, J., & Song, Y.-D. (2016). Distributed economic dispatch for smart grids with random wind power. IEEE Transactions on Smart Grid, 7(3), 1572–1583. doi: 10.1109/TSG.2015.2434831
  • Guo, F., Wen, C., & Song, Y.-D. (2017). Distributed control and optimization technologies in smart grid systems. Boca Raton, FL: CRC Press.
  • He, X., Yu, J., Huang, T., & Li, C. (2018). Distributed power management for dynamic economic dispatch in the multimicrogrids environment. IEEE Transactions on Control Systems Technology, doi:10.1109/TCST.2018.2816902
  • von Heusinger, A., Kanzow, C., & Fukushima, M. (2012). Newton's method for computing a normalized equilibrium in the generalized Nash game through fixed point formulation. Mathematical Programming, 132(1–2), 99–123. doi: 10.1007/s10107-010-0386-2
  • Hindi, K. S., & Ghani, M. R. (1991). Dynamic economic dispatch for large scale power systems: A Lagrangian relaxation approach. International Journal of Electrical Power & Energy Systems, 13(1), 51–56. doi: 10.1016/0142-0615(91)90018-Q
  • Irisarri, G., Kimball, L. M., Clements, K. A., Bagchi, A., & Davis, P. W. (1998). Economic dispatch with network and ramping constraints via interior point methods. IEEE Transactions on Power Systems, 13(1), 236–242. doi: 10.1109/59.651641
  • Jabr, R. A. (2005). Robust self-scheduling under price uncertainty using conditional value-at-risk. IEEE Transactions on Power Systems, 20(4), 1852–1858. doi: 10.1109/TPWRS.2005.856952
  • Kim, B.-G., Zhang, Y., van der Schaar, M., & Lee, J.-W. (2014). Dynamic pricing for smart grid with reinforcement learning. In Proceedings of the IEEE INFOCOM, Toronto, Canada (pp. 640–645).
  • Li, C., Xu, Y., Yu, X., Ryan, C., & Huang, T. (2017). Risk-averse energy trading in multienergy microgrids: A two-stage stochastic game approach. IEEE Transactions on Industrial Informatics, 13(5), 2620–2630. doi: 10.1109/TII.2017.2739339
  • Li, J., Chen, G., Dong, Z., & Wu, Z. (2016). A fast dual proximal-gradient method for separable convex optimization with linear coupled constraints. Computational Optimization and Applications, 64(3), 671–697. doi: 10.1007/s10589-016-9826-0
  • Li, J., Li, C., Wu, Z., Wang, X., Teo, K. L., & Wu, C. (2018). Sparsity-promoting distributed charging control for plug-in electric vehicles over distribution networks. Applied Mathematical Modelling, 58, 111–127. doi: 10.1016/j.apm.2017.10.034
  • Li, J., Li, C., Xu, Y., Dong, Z., Wong, K., & Huang, T. (2018). Noncooperative game-based distributed charging control for plug-in electric vehicles in distribution networks. IEEE Transactions on Industrial Informatics, 14(1), 301–310. doi: 10.1109/TII.2016.2632761
  • Liang, R. H. (1999). A neural-based redispatch approach to dynamic generation allocation. IEEE Transactions on Power Systems, 14(4), 1388–1393. doi: 10.1109/59.801901
  • Misra, S., Krishna, P. V., Saritha, V., & Obaidat, M. S. (2013). Learning automata as a utility for power management in smart grids. IEEE Communications Magazine, 51(1), 98–104. doi: 10.1109/MCOM.2013.6400445
  • Molzahn, K. D., Dörfler, F., Sandberg, H., Low, H. S., Chakrabarti, S., Baldick, R., & Lavaei, J. (2017). A survey of distributed optimization and control algorithms for electric power systems. IEEE Transactions on Smart Grids, 8(6), 2941–2962. doi: 10.1109/TSG.2017.2720471
  • Morales, J. M., Conejo, A. J., & Perez-Ruiz, J. (2010). Short-term trading for a wind power producer. IEEE Transactions on Power Systems, 25(1), 554–564. doi: 10.1109/TPWRS.2009.2036810
  • Pousinho, H. M. I., Mendes, V. M. F., & Catalao, J. P. S. (2011). A risk-averse optimization model for trading wind energy in a market environment under uncertainty. Energy, 36(8), 4935–4942. doi: 10.1016/j.energy.2011.05.037
  • Rockafellar, R., & Uryasev, S. (2002). Conditional value-at-risk for general loss distributions. Journal of Banking & Finance, 26, 1443–1471. doi: 10.1016/S0378-4266(02)00271-6
  • Saad, W., Han, Z., Poor, H. V., & Başar, T. (2011). A noncooperative game for double auction-based energy trading between PHEVS and distribution grids. In Proceedings of the international conference smart grid communications (pp. 267–272).
  • Saad, W., Han, Z., Poor, H. V., & Başar, T. (2012). Game-theoretic methods for the smart grid: An overview of microgrid systems, demand-side management, and smart grid communications. IEEE Signal Processing Magazine, 29(5), 86–105. doi: 10.1109/MSP.2012.2186410
  • Saebi, J., Mohammadi, J., Taheri, H., & Nayer, S. (2010). Demand bidding/buyback modeling and its impact on market clearing price. In Proceedings of the IEEE international energy conference and exhibition (EnergyCon) (pp. 791–796).
  • Swarup, K. S., & Natarrajan, A. (2005). Constrained optimization using evolutionary programming for dynamic economic dispatch. In Proceedings of the 3rd international conference intelligent sensing and information processing (pp. 314–319).
  • Tarasak, P. (2011). Optimal real-time pricing algorithm based on utility maximization for smart grid. In 2011 IEEE international conference on smart grid communications (SmartGridComm) (pp. 321–326).
  • Tsui, K. M., & Chan, S. C. (2012). Demand response optimization for smart home scheduling under real-time pricing. IEEE Transactions on Smart Grids, 3(4), 1812–1821. doi: 10.1109/TSG.2012.2218835
  • Urieli, D., & Stone, P. (2016). Autonomous electricity trading using time-of-use tariffs in a competitive market. In Proceedings of the 13th AAAI conference artificial intelligence (AAAI-16) (pp. 345–351).
  • Wang, H., Huang, T., Liao, X., Abu-Rub, H., & Chen, G. (2016a). Reinforcement learning in energy trading game among smart microgrids. IEEE Transactions on Industrial Electronics, 63(8), 5109–5119. doi: 10.1109/TIE.2016.2554080
  • Wang, H., Huang, T., Liao, X., Abu-Rub, H., & Chen, G. (2016b). Reinforcement learning for constrained energy trading games with incomplete information. IEEE Transactions on Cybernetics, 47(10), 3404–3416. doi: 10.1109/TCYB.2016.2539300
  • Xia, X., & Elaiw, A. M. (2010). Optimal dynamic economic dispatch of generation: A review. Electric Power Systems Research, 80(8), 975–986. doi: 10.1016/j.epsr.2009.12.012
  • Yang, P., Tang, G., & Nehorai, A. (2013). A game-theoretic approach for optimal time-of-use electricity pricing. IEEE Transactions on Power Systems, 28(2), 884–892. doi: 10.1109/TPWRS.2012.2207134
  • Yang, S., Tan, S., & Xu, J.-X. (2013). Consensus based approach for economic dispatch problem in a smart grid. IEEE Transactions on Power Systems, 28(4), 4416–4426. doi: 10.1109/TPWRS.2013.2271640
  • Zhao, W., Liu, M., Zhu, J., & Li, L. (2016). Fully decentralised multi-area dynamic economic dispatch for large-scale power systems via cutting plane consensus. IET Generation, Transmission & Distribution, 10(10), 2486–2495. doi: 10.1049/iet-gtd.2015.1345

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.