121
Views
2
CrossRef citations to date
0
Altmetric
Articles

Playing repeated security games with multiple attacker types: a Q-iteration on a linear programming approach

ORCID Icon, &
Pages 322-330 | Received 17 Jun 2019, Accepted 26 Jul 2020, Published online: 13 Aug 2020

References

  • Amin, K., Singh, S., & Wellman, M. P. (2016). Gradient methods for Stackelberg security games. In Alexander Ihler & Dominik Janzing (Eds.), Proceedings of the 32nd conference on uncertainty in artificial intelligence (pp. 2–11). AUAI Press.
  • An, B., Pita, J., Shieh, E., Tambe, M., Kiekintveld, C., & Marecki, J. (2011). GUARDS and PROTECT: Next generation applications of security games. ACM SIGecom Exchanges, 10(1), 31–34. https://doi.org/10.1145/1978721.1978729
  • An, B., Tambe, M., & Sinha, A. (2016). Stackelberg security games (SSG) basics and application overview. In Ali E. Abbas, Milind Tambe, & Detlof von Winterfeldt (Eds.), Improving homeland security decisions (485–507). Cambridge University Press.
  • Archibald, T. W., & Marshall, S. E. (2018). Review of mathematical programming applications in water resource management under uncertainty. Environmental Modeling & Assessment, 23(6), 753–777. https://doi.org/10.1007/s10666-018-9628-0
  • Baykal-Guersoy, M., Duan, Z., Poor, H. V., & Garnaev, A. (2014). Infrastructure security games. European Journal of Operational Research, 239(2), 469–478. https://doi.org/10.1016/j.ejor.2014.04.033
  • Blum, A., Haghtalab, N., & Procaccia, A. D. (2015). Learning to play Stackelberg security games. Technical report, Carnegie Mellon University, Computer Science Department (pp. 1–18).
  • Brown, M., An, B., Kiekintveld, C., Ordóñez, F., & Tambe, M. (2012). Multi-objective optimization for security games. In Wiebe van der Hoek, Lin Padgham, Vincent Conitzer, & Michael Winikoff (Eds.), Proceedings of the 11th international conference on autonomous agents and multiagent systems – Volume 2 (pp. 863–870). International Foundation for Autonomous Agents and Multiagent Systems.
  • Brown, M., An, B., Kiekintveld, C., Ordóñez, F., & Tambe, M. (2014). An extended study on multi-objective security games. Autonomous Agents and Multi-agent Systems, 28(1), 31–71. https://doi.org/10.1007/s10458-012-9209-6
  • Brown, M., Haskell, W. B., & Tambe, M. (2014). Addressing scalability and robustness in security games with multiple boundedly rational adversaries. In Radha Poovendran & Walid Saad (Eds.), Proceedings of the 5th International conference on decision and game theory for security (pp. 23–42). Springer.
  • Castelletti, A., Pianosi, F., & Restelli, M. (2012). Tree-based fitted Q-iteration for multi-objective Markov decision problems. In Hussein Abbass & Cesare Alippi (Eds.), The 2012 international joint conference on neural networks (IJCNN) (pp. 1–8). IEEE.
  • Chatterjee, K., Majumdar, R., & Henzinger, T. A. (2006). Markov decision processes with multiple objectives. In Bruno Durand & Wolfgang Thomas (Eds.), Annual symposium on theoretical aspects of computer science (pp. 325–336). Springer.
  • Cheung, K. F., & Bell, M. G. (2019). Attacker–defender model against quantal response adversaries for cyber security in logistics management: An introductory study. European Journal of Operational Research. https://doi.org/10.1016/j.ejor.2019.10.019
  • Chicoisne, R., & Ordóñez, F. (2016). Risk averse Stackelberg security games with quantal response. In Quanyan Zhu, Tansu Alpcan, Emmanouil A. Panaousis, Milind Tambe, & William Casey (Eds.), Proceedings of the 7th international conference on decision and game theory for security (pp. 83–100). Springer.
  • Ernst, D., Geurts, P., & Wehenkel, L. (2005). Tree-based batch mode reinforcement learning. Journal of Machine Learning Research, 6, 503–556. https://doi.org/10.1007/s10883-005-4175-9
  • Fang, F., & Nguyen, T. H. (2016). Green security games: Apply game theory to addressing green security challenges. ACM SIGecom Exchanges, 15(1), 78–83. https://doi.org/10.1145/2994501.2994507
  • Garnaev, A., Baykal-Gursoy, M., & Poor, H. V. (2014). Incorporating attack-type uncertainty into network protection. IEEE Transactions on Information Forensics and Security, 9(8), 1278–1287. https://doi.org/10.1109/TIFS.2014.2329241
  • Gholami, S., Yadav, A., Tran-Thanh, L., Dilkina, B., & Tambe, M. (2019). Don't put all your strategies in one basket: Playing green security games with imperfect prior knowledge. In Edith Elkind, Manuela Veloso, Noa Agmon, & Matthew E. Taylor (Eds.), Proceedings of the 18th international conference on autonomous agents and multiagent systems (pp. 395–403). International Foundation for Autonomous Agents and Multiagent Systems.
  • Jain, M., Tsai, J., Pita, J., Kiekintveld, C., Rathi, S., Tambe, M., & Ordónez, F. (2010). Software assistants for randomized patrol planning for the lax airport police and the federal air marshal service. Interfaces, 40(4), 267–290. https://doi.org/10.1287/inte.1100.0505
  • Kar, D., Fang, F., Delle Fave, F. M., Sintov, N., Tambe, M., & Lyet, A. (2016). Comparing human behavior models in repeated Stackelberg security games: An extended study. Artificial Intelligence, 240, 65–103. https://doi.org/10.1016/j.artint.2016.08.002
  • Klima, R., Tuyls, K., & Oliehoek, F. A. (2018). Model-based reinforcement learning under periodical observability. In Sheila A. McIlraith & Kilian Q. Weinberger (Eds.), 2018 AAAI Spring symposium series. AAAI Press.
  • Lou, J., Smith, A. M., & Vorobeychik, Y. (2017). Multidefender security games. IEEE Intelligent Systems, 32(1), 50–60. https://doi.org/10.1109/MIS.2017.11
  • Marecki, J., Tesauro, G., & Segal, R. (2012). Playing repeated Stackelberg games with unknown opponents. In Wiebe van der Hoek,Lin Padgham, Vincent Conitzer, & Michael Winikoff (Eds.), Proceedings of the 11th international conference on autonomous agents and multiagent systems – Volume 2 (pp. 821–828). International Foundation for Autonomous Agents and Multiagent Systems.
  • Muaafa M., & Ramirezmarquez J. E. (2017). Bi-objective evolutionary approach to the design of patrolling schemes for improved border security. Computers & Industrial Engineering, 107, 74–84. https://doi.org/10.1016/j.cie.2017.03.010
  • Nguyen, T. H., Sinha, A., Gholami, S., Plumptre, A., Joppa, L., Tambe, M., Driciru, M., Wanyama, F., Rwetsiba, A., & Critchlow, R. (2016). Capture: A new predictive anti-poaching tool for wildlife protection. In Catholijn M. Jonker, Stacy Marsella, John Thangarajah, & Karl Tuyls (Eds.), Proceedings of the 15th international joint conference on autonomous agents and multiagent systems. International foundation for autonomous agents and multiagent systems.
  • Nguyen, T. H., Sinha, A., & Tambe, M. (2016). Conquering adversary behavioral uncertainty in security games: An efficient modeling robust based algorithm. In Dale Schuurmans & Michael P. Wellman (Eds.), Proceedings of the 30th AAAI conference on artificial intelligence. AAAI Press.
  • Paruchuri, P., Pearce, J. P., Tambe, M., Ordonez, F., & Kraus, S. (2007). An efficient heuristic approach for security against multiple adversaries. In Edmund Durfee, Makoto Yokoo, Michael Huhns, & Onn Shehory (Eds.), Proceedings of the 6th international joint conference on autonomous agents and multiagent systems (p. 181). Association for Computing Machinery.
  • Pianosi, F., Castelletti, A., & Restelli, M. (2013). Tree-based fitted Q-iteration for multi-objective Markov decision processes in water resource management. Journal of Hydroinformatics, 15(2), 258–270. https://doi.org/10.2166/hydro.2013.169
  • Shieh, E. A., An, B., Yang, R., Tambe, M., Baldwin, C., DiRenzo, J., Maule, B., & Meyer, G. (2012). PROTECT: An application of computational game theory for the security of the ports of the United States. In Jörg Hoffmann & Bart Selman (Eds.), Proceedings of the 26th AAAI conference on artificial intelligence. AAAI Press.
  • Sinha, A., Fang, F., An, B., Kiekintveld, C., & Tambe, M. (2018). Stackelberg security games: Looking beyond a decade of success. In Jérôme Lang (Ed.), Proceedings of the 27th international joint conference on artificial intelligence (pp. 5494–5501). International Joint Conferences on Artificial Intelligence.
  • Wang X. (2019). Defending on networks: Applying fame theory to prevent illegal activities in structured security domains [Unpublished doctoral dissertation]. Nanyang Technological University.
  • Wang, B., Zhang, Y., Zhou, Z. H., & Zhong, S. (2019). On repeated Stackelberg security game with the cooperative human behavior model for wildlife protection. Applied Intelligence, 49(3), 1002–1015. https://doi.org/10.1007/s10489-018-1307-y
  • Xu, H., Tran-Thanh, L., & Jennings, N. R. (2016). Playing repeated security games with no prior knowledge. In Catholijn M. Jonker, Stacy Marsella, John Thangarajah, & Karl Tuyls (Eds.), Proceedings of the 15th international conference on autonomous agents & multiagent systems (pp. 104–112). Autonomous Agents and Multiagent Systems.
  • Yin Z. (2013). Addressing uncertainty in Stackelberg games for security: Models and algorithms [Unpublished doctoral dissertation]. University of Southern California.
  • Yin, Z., Jiang, A. X., Tambe, M., Kiekintveld, C., Leyton-Brown, K., Sandholm, T., & Sullivan, J. P. (2012). TRUSTS: Scheduling randomized patrols for fare inspection in transit systems using game theory. AI Magazine, 33(4), 59–59. https://doi.org/10.1609/aimag.v33i4.2432
  • Yolmeh, A., & Baykal-Gürsoy, M. (2017). A robust approach to infrastructure security games. Computers & Industrial Engineering, 110, 515–526. https://doi.org/10.1016/j.cie.2017.06.032

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.