406
Views
1
CrossRef citations to date
0
Altmetric
Articles

Modified grey wolf optimised adaptive super-twisting sliding mode control of rotary inverted pendulum system

&
Pages 270-279 | Received 09 Sep 2021, Accepted 01 Apr 2022, Published online: 06 May 2022

References

  • Acosta J. A. (2010). Furuta’s pendulum: A conservative nonlinear model for theory and practice. Mathematical Problems in Engineering, 8, 1–29.
  • Avelar, C. A., & Valenzuela, J. M. (2014, June 4-6). A feedback linearization controller for trajectory tracking of the Furuta pendulum. 2014 American control conference, Portland, Oregon, USA.
  • Avelar, C. A., & Valenzuela, J. M. (2015). A composite controller for trajectory tracking applied to the Furuta pendulum. ISA Transactions, 57, 286–294. https://doi.org/10.1016/j.isatra.2015.02.009
  • Bahrami, M., Naraghi, M., & Zareinejad, M. (2018). Adaptive super-twisting observer for fault reconstruction in electro-hydraulic systems. ISA Transactions, 76, 235–245. https://doi.org/10.1016/j.isatra.2018.03.014
  • Gupta, N., & Dewan, L. (2019). Modeling and simulation of rotary-rotary planer inverted pendulum. Journal of Physics: Conference Series, 1240, 1–8.
  • Gupta, N., & Dewan, L. (in press). Trajectory tracking and balancing control of rotary inverted pendulum system using quasi-sliding mode control. Mechatronic Systems and Control, 50(1). https://doi.org/10.2316/J.2022.201-0231
  • Han, S. (2020). Modified grey-wolf algorithm optimized fractional-order sliding mode control for unknown manipulators with a fractional-order disturbance observer. IEEE Access, 8, 18337–18349. https://doi.org/10.1109/ACCESS.2020.2966253
  • Huang, J., Zhang, M., Ri, S., Xiong, C., Li, Z., & Kang, Y. (2020). High-order disturbance-observer-based sliding mode control for mobile wheeled inverted pendulum systems. IEEE Transactions on Industrial Electronics, 67(3), 2030–2041. https://doi.org/10.1109/TIE.2019.2903778
  • Huangi, J., Zhangi, T., Fan, Y., & Sun, J. Q. (2019). Control of rotary inverted pendulum using model-free back-stepping technique. IEEE Access, 7, 96965–96973. https://doi.org/10.1109/ACCESS.2019.2930220
  • Jodah, A. A., Zargarzadeh, H., & Abbas, M. K. (2013, 29 November-1 December). Experimental verification and comparison of different stabilizing controllers for a rotary inverted pendulum. 2013 IEEE International Conference on Control System, Computing and Engineering, Mindeb, Malaysia.
  • Kurode, S., Chalanga, A., & Bandyopadhya, B. (2013). Swing-up and stabilization of rotary inverted pendulum using sliding modes. Proceedings of IFAC World Congress, 44(1), 10685–10690. https://doi.org/10.3182/20110828-6-IT-1002.02933
  • Levant, A. (2007). Principles of 2-sliding mode design. Automatica, 43(4), 576–586. https://doi.org/10.1016/j.automatica.2006.10.008
  • Mirjalili, S., Mirjalili, S. M., & Lewis, A. (2014). Grey wolf optimizer. Advances in Engineering Software, 69, 46–61. https://doi.org/10.1016/j.advengsoft.2013.12.007
  • Nguyen, H. C. T., & Shen, A. W. (2013). Using adaptive gain scheduling LQR method control of arm driven inverted pendulum system based on PIC18F4431. Journal of Harbin Institute of Technology, 20(4), 85–92.
  • Nguyen, N. P., Oh, H., Kim, Y., & Moon, J. (2021). A nonlinear hybrid controller for swinging-up and stabilizing the rotary inverted pendulum. Nonlinear Dynamics, 104(2), 1117–1137. https://doi.org/10.1007/s11071-021-06317-2
  • Nguyen, N. P., Oh, H., Kim, Y., Moon, J., Yang, J., & Chen, W. H. (2020). Fuzzy-based super-twisting sliding mode stabilization control for under-actuated rotary inverted pendulum systems. IEEE Access, 8, 185079–185092. https://doi.org/10.1109/ACCESS.2020.3029095
  • Philippe, F., Guoyuan, Q., & Martial, T. (2014, December 18). Sliding mode control of a rotary inverted pendulum using higher order differential observer. 14th International Conference on Control, Automation and Systems, Seoul, South Korea.
  • Prasad, L. B., Tyagi, B., & Gupta, H. O. (2011, November 25-27). Optimal control of nonlinear inverted pendulum dynamical system with disturbance input using PID controller & LQR. 2011 IEEE International Conference on Control System, Computing and Engineering, Penang, Malaysia.
  • Sen, M. A., & Kalyoncu, M. (2016). Optimal tuning of a LQR controller for an inverted pendulum using the bees algorithm. Journal of Automation and Control Engineering, 4(5), 384–387. https://doi.org/10.18178/joace.4.5.384-387
  • Shtessel, Y., Taleb, M., & Plestan, F. (2012). A novel adaptive-gain supertwisting sliding mode controller: Methodology and application. Automatica, 48(5), 759–769. https://doi.org/10.1016/j.automatica.2012.02.024
  • Slotine, J. J., & Li, W. (1991). Applied nonlinear control. Prentice-Hall.
  • Valenzuela, J. M., & Avelar, C. A. (2018). Feedback linearization control of the IWP. In Motion control of underactuated mechanical systems, intelligent systems, control and automation: Science and engineering (pp. 141–158). Springer. 2018.
  • Wadi, A., Lee, J., & Romdhane, L. (2018, March 1). Nonlinear sliding mode control of the Furuta pendulum. 11th International Symposium on Mechatronics and its Applications (ISMA), 1–5.
  • Wang, J. J. (2011). Simulation studies of inverted pendulum based on PID controllers. Simulation Modelling Practice and Theory, 19(1), 440–449. https://doi.org/10.1016/j.simpat.2010.08.003
  • Yang, X., & Zheng, X. (2018). Swing-up and stabilization control design for an underactuated rotary inverted pendulum system: Theory and experiments. IEEE Transactions on Industrial Electronics, 65(9), 7229–7238. https://doi.org/10.1109/TIE.2018.2793214

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.