208
Views
0
CrossRef citations to date
0
Altmetric
Articles

Multi objective optimization method for collision safety of networked vehicles based on improved particle optimization

, &
Pages 134-142 | Received 10 Dec 2021, Accepted 18 May 2022, Published online: 06 Jun 2022

References

  • Ahmed, A. (2020). The influence of the vehicle hood inclination angle on the severity of the pedestrian adult head injury in a front collision using finite element modeling. Thin-Walled Structures, 150, Article 106674. https://doi.org/10.1016/j.tws.2020.106674
  • Bonadio, A., Chiti, F., Fantacci, R., & Vespri, V. (2020). An integrated framework for blockchain inspired fog communications and computing in internet of vehicles. Journal of Ambient Intelligence and Humanized Computing, 11(2), 755–762. https://doi.org/10.1007/s12652-019-01476-y
  • Chhabra, S., & Singh, H. (2020). Optimizing design of fuzzy model for software cost estimation using particle swarm optimization algorithm. International Journal of Computational Intelligence and Applications, 19(1), Article 2050005. https://doi.org/10.1142/S1469026820500054
  • Eddine, M. S., Ferrag, M. A., Friha, O., & Maglaras, L. (2021). EASBF: An efficient authentication scheme over blockchain for fog computing-enabled internet of vehicles. Journal of Information Security and Applications, 59, Article 102802. https://doi.org/10.1016/j.jisa.2021.102802
  • El-Shorbagy, M. A., Elhoseny, M., Hassanien, A. E., & Ahmed, S. H. (2019). A novel PSO algorithm for dynamic wireless sensor network multiobjective optimization problem. Transactions on Emerging Telecommunications Technologies, 30(11), e3523. https://doi.org/10.1002/ett.3523
  • Kamble, S. J., & Kounte, M. R. (2020). Machine learning approach on traffic congestion monitoring system in internet of vehicles. Procedia Computer Science, 171, 2235–2241. https://doi.org/10.1016/j.procs.2020.04.241
  • Khan, M. W., Zeeshan, M., Farid, A., & Usman, M. (2020). QoS-aware traffic scheduling framework in cognitive radio based smart grids using multi-objective optimization of latency and throughput. Ad Hoc Networks, 97, Article 102020. https://doi.org/10.1016/j.adhoc.2019.102020
  • Khidir, T. C., & Ismael, A. M. (2018). Experimental study of brake system in light vehicles. Journal of Mechanical Engineering Research and Developments, 41(1), 62–67. http://doi.org/10.7508/jmerd.2018.01.008
  • Kwon, D., Kim, J., Mohaisen, D. A., & Lee, W. (2020). Self-adaptive power control with deep reinforcement learning for millimeter-wave internet-of-vehicles video caching. Journal of Communications and Networks, 22(4), 326–337. https://doi.org/10.1109/JCN.2020.000022
  • Lee, M. S., Park, J., & Kang, C. G. (2019). Drop-test simulations to investigate collision characteristics of automobile center-pillar Structures according to partial quenching area. In J. W. Yoon, H. N. Han, B. S. Kang, & Y. S. Kim (Eds.), Key engineering materials (Vol. 794, pp. 151–159). Trans Tech Publications.
  • Li, Z., Yuchen, W., & Kai, D. (2018). Optimal international logistics service composition algorithm based on improved particle swarm optimization algorithm in cloud environment. Journal of Intelligent & Fuzzy Systems, 35(3), 2793–2803. https://doi.org/10.3233/JIFS-169632
  • Liu, T. (2019). Comparison of car-following behavior in terms of safety indicators between China and Sweden. IEEE Transactions on Intelligent Transportation Systems, 21(9), 3696–3705. https://doi.org/10.1109/TITS.2019.2931797
  • Matos, M. A., Rocha, A. M. A., & Costa, L. A. (2021). Many-objective optimization of build part orientation in additive manufacturing. The International Journal of Advanced Manufacturing Technology, 112(3), 747–762. https://doi.org/10.1007/s00170-020-06369-5
  • Meza, J., Espitia, H., Montenegro, C., Giménez, E., & González-Crespo, R. (2017). MOVPSO: Vortex multi-objective particle swarm optimization. Applied Soft Computing, 52, 1042–1057. https://doi.org/10.1016/j.asoc.2016.09.026
  • Mun, H., Han, K., & Lee, D. H. (2020). Ensuring safety and security in CAN-based automotive embedded systems: A combination of design optimization and secure communication. IEEE Transactions on Vehicular Technology, 69(7), 7078–7091. https://doi.org/10.1109/TVT.2020.2989808
  • Nkenyereye, L., Liu, C. H., & Song, J. (2019). Towards secure and privacy preserving collision avoidance system in 5G fog based internet of vehicles. Future Generation Computer Systems, 95, 488–499. https://doi.org/10.1016/j.future.2018.12.031
  • Pokhrel, S. R., & Choi, J. (2020). Improving TCP performance over WiFi for internet of vehicles: A federated learning approach. IEEE Transactions on Vehicular Technology, 69(6), 6798–6802. https://doi.org/10.1109/TVT.2020.2984369
  • Poomagal, C. T., & Sathish Kumar, G. A. (2020). ECC based lightweight secure message conveyance protocol for satellite communication in internet of vehicles (IoV). Wireless Personal Communications, 113(2), 1359–1377. https://doi.org/10.1007/s11277-020-07285-3
  • Priyan, M. K., & Devi, G. U. (2019). A survey on internet of vehicles: Applications, technologies, challenges and opportunities. International Journal of Advanced Intelligence Paradigms, 12(1-2), 98–119. https://doi.org/10.1504/IJAIP.2019.096957
  • Qureshi, K. N., Idrees, M. M., Lloret, J., & Bosch, I. (2020). Self-assessment-based clustering data dissemination for sparse and dense traffic conditions for internet of vehicles. IEEE Access, 8, 10363–10372. https://doi.org/10.1109/ACCESS.2020.2964530
  • Shahab, M., Wang, S., & Junejo, A. K. (2021). Improved control strategy for three-phase microgrid management with electric vehicles using multi objective optimization algorithm. Energies, 14(4), 1146. https://doi.org/10.3390/en14041146
  • Tajchman, K., Gawryluk, A., & Fonseca, C. (2020). Predicting wildlife–vehicle collisions in an urban area by the example of Lublin in Poland. Applied Ecology and Environmental Research, 18(1), 1981–1997. https://doi.org/10.15666/aeer/1801_19811997
  • Thanh, P. N., Cho, M. Y., & Da, T. N. (2021). Insulator leakage current prediction using surface spark discharge data and particle swarm optimization based neural network. Electric Power Systems Research, 191, Article 106888. https://doi.org/10.1016/j.epsr.2020.106888
  • Van Breugel, F., Kutz, J. N., & Brunton, B. W. (2020). Numerical differentiation of noisy data: A unifying multi-objective optimization framework. IEEE Access, 8, 196865–196877. https://doi.org/10.1109/ACCESS.2020.3034077
  • Wang, A., Liang, J., & Liu, Y. (2020). Application of improved particle swarm optimization in gear fault diagnosis of automobile transmission. Jordan Journal of Mechanical & Industrial Engineering, 14, 1.
  • Xing, J., Xu, P., Zhao, H., Yao, S. G., Wang, Q. X., & Li, B. H. (2020). Crashworthiness design and experimental validation of a novel collision post structure for subway cab cars. Journal of Central South University, 27(9), 2763–2775. https://doi.org/10.1007/s11771-020-4497-5
  • Yang, T., Yang, C., Sun, Z., & Feng, H. (2015). PSC ship-selecting model based on improved particle swarm optimization and support vector machine algorithm. Journal of Coastal Research, 73(10073), 692–697. https://doi.org/10.2112/SI73-119.1
  • Ye, T. (2020). Internet of things financial data capture technology based on improved particle swarm optimization FLFNN. International Journal of Computers and Applications, 42(1), 102–107. https://doi.org/10.1080/1206212X.2017.1397389
  • Zhang, S., Zhang, W., Zhao, J., & Wang, R. (2020). Multi-objective optimization design and analysis of double-layer winding Halbach fault-tolerant motor. IEEE Access, 9, 3725–3734. https://doi.org/10.1109/ACCESS.2020.3047860
  • Zheng, Y. J., Feng, Y., & Joshi, S. (2016). Construction and study of multi-DOF automobile dynamic model. Journal of Mechanical Engineering Research and Developments, 39(1), 187–196. https://doi.org/10.7508/jmerd.2016.01.026
  • Zhu, H., & Liu, T. (2020). Rotor displacement self-sensing modeling of six-pole radial hybrid magnetic bearing using improved particle swarm optimization support vector machine. IEEE Transactions on Power Electronics, 35(11), 12296–12306. https://doi.org/10.1109/TPEL.2020.2982746

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.