288
Views
7
CrossRef citations to date
0
Altmetric
Articles

A novel convolutional neural network with gated recurrent unit for automated speech emotion recognition and classification

, , , , &

References

  • Abdelwahab, M., & Busso, C. (2018). Domain adversarial for acoustic emotion recognition. IEEE/ACM transactions on audio. Speech, and Language Processing, 26(12), 2423–2435. https://doi.org/10.1109/TASLP.2018.2867099.
  • Akçay, M. B., & Oğuz, K. (2020). Speech emotion recognition: Emotional models, databases, features, preprocessing methods, supporting modalities, and classifiers. Speech Communication, 116(4), 56–76. https://doi.org/10.1016/j.specom.2019.12.001.
  • Chakraborty, R., Verma, G., & Namasudra, S. (2021). IFODPSO-based multi-level image segmentation scheme aided with Masi entropy. Journal of Ambient Intelligence and Humanized Computing, 12(7), 7793–7811. https://doi.org/10.1007/s12652-020-02506-w
  • Chavhan, Y., Dhore, M. L., & Yesaware, P. (2010). Speech emotion recognition using support vector machine. International Journal of Computer Applications, 1(20), 6–11. https://doi.org/10.5120/431-636
  • Chen, W., Pourghasemi, H. R., & Naghibi, S. A. (2018). A comparative study of landslide susceptibility maps produced using support vector machine with different kernel functions and entropy data mining models in China. Bulletin of Engineering Geology and the Environment, 77(2), 647–664. https://doi.org/10.1007/s10064-017-1010-y
  • Cyril, C. P. D., Beulah, J. R., Subramani, N., Mohan, P., Harshavardhan, A., & Sivabalaselvamani, D. (2021). An automated learning model for sentiment analysis and data classification of Twitter data using balanced CA-SVM. Concurrent Engineering, 29(4), 386–395. https://doi.org/10.1177/1063293X211031485
  • Fayek, H. M., Lech, M., & Cavedon, L. (2017). Evaluating deep learning architectures for speech emotion recognition. Neural Networks, 92(10), 60–68. https://doi.org/10.1016/j.neunet.2017.02.013.
  • Ganin, Y., Ustinova, E., Ajakan, H., Germain, P., Larochelle, H., Laviolette, F., Marchand, M., & Lempitsky, V. (2016). Domain-adversarial training of neural networks. The Journal of Machine Learning Research, 17(1), 2096–2030. https://doi.org/10.1007/978-3-319-58347-1_10.
  • Gao, X., Li, X., Zhao, B., Ji, W., Jing, X., & He, Y. (2019). Short-term electricity load forecasting model based on EMD-GRU with feature selection. Energies, 12(6), 1140. https://doi.org/10.3390/en12061140
  • Gonçalo Oliveira, H., Sousa, T., & Alves, A. (2021). Assessing lexical-semantic regularities in Portuguese Word embeddings. International Journal of Interactive Multimedia & Artificial Intelligence, 6(5), 12–21. https://doi.org/10.9781/ijimai.2021.02.006
  • Jeon, J. H., Xia, R., & Liu, Y. (2011, May). Sentence level emotion recognition based on decisions from subsentence segments (pp. 4940-4943). 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Prague, Czech Republic. IEEE. https://doi.org/10.1109/ICASSP15948.201122-27
  • Kotsakis, R., Dimoulas, C., Kalliris, G., & Veglis, A. (2014). Emotional prediction and content profile estimation in evaluating audiovisual mediated communication. International Journal of Monitoring and Surveillance Technologies Research (IJMSTR), 2(4), 62–80. https://doi.org/10.4018/IJMSTR.2014100104
  • Namasudra, S., Dhamodharavadhani, S., & Rathipriya, R. (2021). Nonlinear neural network based forecasting model for predicting COVID-19 cases. Neural Processing Letters, 1–21. https://doi.org/10.1007/s11063-021-10495-w
  • Neelakandan, S., Annamalai, R., Rayen, S. J., & Arunajsmine, J. (2020). Social media networks owing to disruptions for effective learning. Procedia Computer Science, 172(152), 145–151. https://doi.org/10.1016/j.procs.2020.05.022.
  • Neelakandan, S., Arun, A., Bhukya, R. R., Hardas, B. M., Kumar, T., & Ashok, M. (2022). An automated word embedding with parameter tuned model for Web crawling. Intelligent Automation and Soft Computing, 32(3), 1617–1632. https://doi.org/10.32604/iasc.2022.022209
  • Neelakandan, S., Berlin, M. A., Tripathi, S., Devi, V. B., Bhardwaj, I., & Arulkumar, N. (2021). IoT-based traffic prediction and traffic signal control system for smart city. Soft Computing, 25(18), 12241–12248. https://doi.org/10.1007/s00500-021-05896-x
  • Okwuashi, O., & Ndehedehe, C. E. (2020). Deep support vector machine for hyperspectral image classification. Pattern Recognition, 103(16), 107298. https://doi.org/10.1016/j.patcog.2020.107298.
  • Pan, S. J., Tsang, I. W., Kwok, J. T., & Yang, Q. (2010). Domain adaptation via transfer component analysis. IEEE Transactions on Neural Networks, 22(2), 199–210. https://doi.org/10.1109/TNN.2010.2091281
  • Reshma, G., Al-Atroshi, C., Nassa, V. K., Geetha, B., Sunitha, G., Galety, M. G., & Neelakandan, S. (2022). Deep learning-based skin lesion diagnosis model using dermoscopic images. Intelligent Automation & Soft Computing, 31(1), 621–634. https://doi.org/10.32604/iasc.2022.019117
  • Sahu, S., Gupta, R., & Espy-Wilson, C. (2018). On enhancing speech emotion recognition using generative adversarial networks. arXiv preprint arXiv:1806.06626.
  • Sajjad, M., & Kwon, S. (2020). Clustering-based speech emotion recognition by incorporating learned features and deep BiLSTM. IEEE Access, 8(21), 79861–79875. https://doi.org/10.1109/ACCESS.2020.2990405.
  • Schuller, B., Vlasenko, B., Eyben, F., Rigoll, G., & Wendemuth, A. (2009, November). Acoustic emotion recognition: A benchmark comparison of performances. In 2009 IEEE Workshop on Automatic Speech Recognition & Understanding (pp. 552–557). IEEE.
  • Schuller, B., Vlasenko, B., Eyben, F., Wöllmer, M., Stuhlsatz, A., Wendemuth, A., & Rigoll, G. (2010). Cross-corpus acoustic emotion recognition: Variances and strategies. IEEE Transactions on Affective Computing, 1(2), 119–131. https://doi.org/10.1109/T-AFFC.2010.8
  • Srivastava, V., Gupta, S., Chaudhary, G., Balodi, A., Khari, M., & García-Díaz, V. (2021). An enhanced texture-based feature extraction approach for classification of biomedical images of CT-scan of lungs. International Journal of Interactive Multimedia & Artificial Intelligence, 6(7), 18–25. https://doi.org/10.9781/ijimai.2020.11.003
  • Suruliandi, A., Kasthuri, A., & Raja, S. P. (2021). Deep feature representation and similarity matrix based Noise Label Refinement Method for efficient face annotation. International Journal of Interactive Multimedia & Artificial Intelligence, 7(2), 66–77. https://doi.org/10.9781/ijimai.2021.05.001
  • Swati, S., Kumar, M., & Namasudra, S. (2022). Early prediction of cognitive impairments using physiological signal for enhanced socioeconomic status. Information Processing & Management, 59(2), 102845. https://doi.org/10.1016/j.ipm.2021.102845
  • Ververidis, D., & Kotropoulos, C. (2006). Emotional speech recognition: Resources, features, and methods. Speech Communication, 48(9), 1162–1181. https://doi.org/10.1016/j.specom.2006.04.003
  • Wu, L., Kong, C., Hao, X., & Chen, W. (2020). A short-term load forecasting method based on GRU-CNN hybrid neural network model. Mathematical Problems in Engineering, 2020. https://doi.org/10.1155/2020/1428104
  • Zehra, W., Javed, A. R., Jalil, Z., Khan, H. U., & Gadekallu, T. R. (2021). Cross corpus multi-lingual speech emotion recognition using ensemble learning. Complex & Intelligent Systems, 7(4), 1845–1854. https://doi.org/10.1007/s40747-020-00250-4
  • Zhang, L., Wang, W., Zhang, M., & Wang, Z. (2020). Imbalanced data classification with deep support vector machines. In Q. Liang, W. Wang, J. Mu, X. Liu, Z. Na, & B. Chen (eds.), Artificial Intelligence in China (pp. 87–95). Springer.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.