450
Views
22
CrossRef citations to date
0
Altmetric
Original Articles

Identification of Quantitative Trait Loci (QTLs) in Aquaculture Species

, , &

REFERENCES

  • Anderson, S. K. Biology of natural killer cells: What is the relationship between natural killer cells and cancer? Will an increased number and/or function of Natural killer cells result in lower cancer incidence? Nutr., 135: 2910S (2005).
  • Andersson, L. and M. Georges. Domestic-animal genomics: Deciphering the genetics of complex traits. Nature Rev. Genet., 5: 202–212 (2004).
  • Araneda, C., N. F. Díaz, G. Gomez, M. E. López, and P. Iturra. Comparative mapping reveals quantitative trait loci that affect spawning time in Coho salmon (Oncorhynchus kisutch). Genet. Mol. Biol., 35: 515–521 (2012).
  • Araneda, C., N. Lam, N. F. Díaz, S. Cortez, C. Pérez, R. Neir, and P. Iturra. Identification, development, and characterization of three molecular markers associated to spawning date in Coho salmon (Oncorhynchus kisutch). Aquacul., 296: 21–26 (2009).
  • Araneda, C., R. Neira, and P. Iturra. Identification of a dominant SCAR marker associated with colour traits in Coho salmon (Oncorhynchus kisutch). Aquacul., 247: 67–73 (2005).
  • Arendt, J. D. Adaptive intrinsic growth rates: An integration across taxa. Q Rev. Biol., 72: 149–177 (1997).
  • Baerwald, M. R., J. L. Petersen, R. P. Hedrick, G. J. Schisler, and B. May. A major effect quantitative trait locus for whirling disease resistance identified in Rainbow trout (Oncorhynchus mykiss). Heredity (Edinb), 106: 920–926 (2011).
  • Baranski, M., T. Moen, and D. I. Vage. Mapping of quantitative trait loci for flesh colour and growth traits in Atlantic salmon (Salmo salar). Genet. Selec. Evol., 42: 17 (2010).
  • Barroso, R. M., P. A. Wheeler, S. E. Lapatra, R. E. Drew, and G. H. Thorgaard. QTL for IHNV resistance and growth identified in a Rainbow (Oncorhynchus mykiss) X Yellowstone cutthroat (Oncorhynchus clarki bouvieri) Trout cross. Aquaculture, 277: 156–163 (2008).
  • Barton, B. A. Stress in fishes: A diversity of responses with particular reference to changes in circulating corticosteroids. Integr. Comp. Biol., 42: 517–525 (2002).
  • Barton, B. A. and C. B. Schreck. Influence of acclimation temperature on interrenal and carbohydrate stress responses in juvenile Chinook salmon (Oncorhynchus tshawytscha). Aquaculture, 62: 299–310 (1987).
  • Borevitz, J. O., and J. Chory. Genomics tools for QTL analysis and gene discovery. Curr. Opin. Plant. Biol., 7(2): 132–136 (2004).
  • Boulding, E. G., M. B. Culling, P. R. Glebe, S. Berg, T. Lien, and T. Moen. Conservation genomics of Atlantic salmon: SNPs associated with QTLs for adaptive traits in parr from four trans-Atlantic backcrosses. Heredity (Edinb), 101: 381–391 (2008).
  • Brannon, E. L. Mechanisms stabilizing salmonid fry emergence timing, pp. 120–124. In: Sockeye Salmon (Oncorhynchus nerka) Population Biology and Future Management (Smith, H. D., L. Margolis, and C. C. Wood, Eds.). Canad. Spec. Pub. Fish Aquat. Sci., 96: (1987).
  • Burt, D., and P. M. Hocking. Mapping quantitative trait loci and identification of genes that control fatness in poultry. Proc. Nutr. Soc., 61: 441–446 (2002).
  • Chatziplis, D., C. Batargias, C. S. Tsigenopoulos, A. Magoulas, S. Kollias, G. Kotoulas, F. A. M. Volckaert, and C. S. Haley. Mapping quantitative trait loci in European sea bass (Dicentrarchus labrax): The BASSMAP pilot study. Aquaculture, 272: 172–182 (2007).
  • Chen, S. L., S. P. Deng, H. Y. Ma, Y. S. Tian, J. Y. Xu, J. F. Yang, Q. Y. Wang, X. S. Ji, C. W. Shao, X. L. Wang, P. F. Wu, H. Deng, and J. Zhai. Molecular marker-assisted sex control in half-smooth Tongue sole (Cynoglossus semilaevis). Aquaculture, 283: 7–12 (2008).
  • Chiller, J. M., H. O. Hodgins, and R. S. Weiser. Antibody response in Rainbow trout (Salmo gairdneri): II. Studies on the kinetics of development of antibody-producing cells and on complement and natural hemolysin. J. Immunol., 102: 1202–1207 (1969a).
  • Chiller, J. M., H. O. Hodgins, V. C. Chambers, and R. S. Weiser. Antibody response in Rainbow trout (Salmo gairdneri): I. Immunocompetent cells in the spleen and anterior kidney. J. Immunol., 102: 1193–1201 (1969b).
  • Cnaani, A., and B. Levavi-Sivan. Sexual development in fish, practical applications for aquaculture. Sex Dev., 3: 164–175 (2009).
  • Cnaani, A., E. M. Hallerman, M. Ron, J. I. Weller, M. Indelman, Y. Kashi, G. A. E. Gall, and G. Hulata. Detection of a chromosomal region with two quantitative trait loci, affecting cold tolerance and fish size, in an F-2 Tilapia hybrid. Aquaculture, 223: 117–128 (2003).
  • Cnaani, A., N. Zilberman, S. Tinman, G. Hulata, and M. Ron. Genome-scan analysis for quantitative trait loci in an F2 tilapia hybrid. Mol. Genet. Genom., 272: 162–172 (2004).
  • Colihueque, N., R. Cardenas, L. Ramirez, F. Estay, and C. Araneda. Analysis of the association between spawning time QTL markers and the biannual spawning behavior in Rainbow trout (Oncorhynchus mykiss). Genet. Mol. Biol., 33: 578–582 (2010).
  • Danzmann, R. G., T. R. Jackson, and M. M. Ferguson. Epistasis in allelic expression at upper temperature tolerance QTL in Rainbow trout. Aquaculture, 173: 45–58 (1999).
  • Dekkers, J. C. M., and F. Hospital. Multifactoral genetics: The use of molecular genetics in the improvement of agricultural populations. Nature Rev. Genet., 3: 22–32 (2002).
  • Derayat, A. Detection of QTL Affecting Flesh Quality Traits (Body Lipid Percentage and Flesh Colour) using Molecular Markers (Microsatellites and AFLP Markers) in Atlantic Salmon (Salmo Salar L.). Ph.D Thesis. School of Natural Sciences, Aquaculture. University of Stirling, Stirling, UK (2009).
  • Derayat, A., R. D. Houston, D. R. Guy, A. Hamilton, J. Ralph, N. Spreckley, J. B. Taggart, B. J. Mcandrew, and C. S. Haley. Mapping QTL affecting body lipid percentage in Atlantic salmon (Salmo salar). Aquaculture, 272(S1): S250–S251 (2007).
  • Doerge, R. W. Mapping and analysis of quantitative trait loci in experimental populations. Nature Rev Genetics., Jan 3: 43–52 (2002).
  • Donnelly, W. A., and F. G. Whoriskey. Transplantation of Atlantic salmon (Salmo salar) and crypsis breakdown. Canad. Spec. Publ. Fish Aquat. Sci., 118: 25–34 (1993).
  • Einum, S., and I. A. Fleming. Selection against late emergence and small offspring in Atlantic salmon (Salmo salar). Evol., 54: 628–639 (2000).
  • Erickson, G. M., P. J. Makovicky, P. J. Currie, M. A. Norell, S. A. Yerby, and C. A. Brochu. Gigantism and comparative life-history parameters of tyrannosaurid dinosaurs. Nature, 430: 772–775 (2004).
  • Eshel, O., A. Shirak, J. Weller, G. Hulata, and M. Ron. Linkage and physical mapping of sex region on LG23 of Nile tilapia (Oreochromis niloticus). G3: Gen. Genom. Genet., 2, 35–42 (2012).
  • Eshel, O., A. Shirak, J. Weller, T. Slossman, G. Hulata, A. Cnaani, and M. Ron. Fine mapping of a locus on linkage group 23 for sex determination in Nile tilapia (Oreochromis niloticus). Anim. Genet., 42: 222–224 (2010).
  • Ferguson, M. M., and R.G. Danzmann. Inter-strain differences in the association between mitochondrial DNA haplotype and growth in cultured Ontario Rainbow trout (Oncorhynchus mykiss). Aquaculture, 178: 245–252 (1999).
  • Ford, S. E., and M. R. Tripp. Diseases and defense mechanisms, pp. 383–450. In: The Eastern Oyster Crassostrea Virginica Maryland Sea Grant College (Newell, R. I. E., V. S. Kennedy, A. F. Eble Eds.). College Park, MD: Maryland Sea Grant Publications (1996).
  • Fridman, E., T. Pleban, and D. Zamir. A recombination hotspot delimits a wild-species quantitative trait locus for tomato sugar content to 484 bp within an invertase gene. Proc. Natl. Acad. Sci. USA. 97: 4718–4723 (2000).
  • Fuji, K., O. Hasegawa, K. Honda, K. Kumasaka, T. Sakamoto, and N. Okamoto. Marker-assisted breeding of a lymphocystis disease-resistant Japanese flounder (Paralichthys olivaceus). Aquaculture, 272: 291–295 (2007)
  • Fuji, K., K. Kobayashi, O. Hasegawa, M. R. M. Coimbra, T. Sakamoto, and N. Okamoto. Identification of a single major genetic locus controlling the resistance to lymphocystis disease in Japanese flounder (Paralichthys olivaceus). Aquaculture, 254: 203–210 (2006).
  • Gheyas, A. A., C. S. Haley, D. R. Guy, A. Hamilton, A. E. Tinch, and J. C. Mota-Velasco. Effect of a major QTL affecting IPN resistance on production traits in Atlantic salmon. Anim. Genet., 41: 666–668 (2010a).
  • Gheyas, A. A., R. D. Houston, J. C. Mota-Velasco, D. R. Guy, A. E. Tinch, C.S. Haley, and J. A. Woolliams. Segregation of infectious pancreatic necrosis resistance QTL in the early life cycle of Atlantic salmon (Salmo salar). Anim. Genet., 41: 531–536 (2010b).
  • Gjedrem, T. Breeding plans for Rainbow trout. Aquaculture, 100(1–3): 73–83 (1992).
  • Gjedrem, T. Flesh quality improvement in fish through breeding. Aquacul. Int., l5: 197–206 (1997).
  • Gjerde, B., S. B. Mengistu, J. Odegard, H. Johansen, and D. S. Altamirano. Quantitative genetics of body weight, fillet weight and fillet yield in Nile tilapia (Oreochromis niloticus). Aquaculture, 342–343: 117–124 (2012).
  • Gjerde, B. Growth and reproduction in fish and shellfish. Aquaculture, 57: 37–55 (1986).
  • Godin, J. G. Migration of salmonids fishes during early life history phase: Daily and annual timing, pp. 22–50. In: Proceeding of the Salmon and Trout Migratory Behavior Symposium (Brannon, E. L. and Salo, E. O., Eds), June 3–5, 1981, School of Fisheries, University of Washington, Seattle, WA (1982).
  • Groenen, M. A. M., H. H. Cheng, N. Bumstead, B. Benkel, E. Briles, D.W. Burt, T. Burke, L. B. Crittenden, J. Dodgson, J. Hillel, S. Lamont, F. A. Ponce de Leon, M. Soller, H. Takahashi, and A. Vignal. A consensus linkage map of the chicken genome. Genome Res., 10(1): 137–147 (2000).
  • Guo, X., Q. Li, Q. Z. Wang, and L. F. Kong. Genetic mapping and QTL analysis of growth-related traits in the Pacific oyster. Marine Biotech., 14: 218–216 (2012).
  • Gutierrez, A. P., K. P. Lubieniecki, E. A. Davidson, S. Lien, M. P. Kent, S. Fukui, R. E. Witheler, B. Swift, and W. S. Davidson. Genetic mapping of quantitative trait loci (QTL) for body-weight in Atlantic salmon (Salmo salar) using a 6.5 K SNP array. Aquaculture, 358–359: 61–70 (2012).
  • Hadidi, S., G. W. Glenney, T. J. Welch, J. T. Silverstein, and G. D. Wiens. Spleen size predicts resistance of rainbow trout to Flavobacterium psychrophilum challenge. J. Immunol., 180(6): 4156–4165 (2008).
  • Haidle, L., J. E. Janssen, K. Gharbi, H. K. Moghadam, M. M. Ferguson, R. G. Danzmann. Determination of quantitative trait loci (QTL) for early maturation in Rainbow trout (Oncorhynchus mykiss). Marine Biotech., 10: 579–592 (2008).
  • He, F., H. S. Wen, S. L. Dong, B. Shi, C. F. Chen, L. S. Wang, J. Yao, X. J. Mu, and Y. G. Zhou. Identification of single nucleotide polymorphism cytochrome P450-c19a and its relation to reproductive traits in Japanese flounder (Paralichthys olivaceus). Aquaculture, 279, 177–181 (2008).
  • He, X. P., J. H. Xia, C. M. Wang, H. Y. Pang, and G. H. Yue. Significant associations of polymorphisms in the prolactin gene with growth traits in Asian seabass (Lates calcarifer). Anim. Genet., 43: 233–236 (2012).
  • Hedgecock, D., G. Li, and M. L. Voigt. Mapping heterosis QTL in the Pacific oyster (Crassostrea gigas). Aquaculture, 272(1):S267–S268 (2007).
  • Holtby, L. B., T. E. McMahon, and J. C. Scrivener. Stream temperatures and inter-annual variability in the emigration timing of Coho salmon smolts and fry and chum salmon fry from Carnation Creek, British Columbia. Canad. J. Fish. Auat. Sci., 46: 1396–1405 (1989).
  • Hou, N., X. Hou, Y. Li, D. Li, F. Liu, R. Mao, and X. Sun. Genetic potential analysis of German mirror carp (Cyprinus carpio L.) using microsatellite markers. Hereditas (Beijing). 29(12): 1509–1518 (2007). [Chinese]
  • Houston, R. D., C. S. Haley, A. Hamilton, D. R. Guy, J. C. Mota-Velasco, A. A. Gheyas, A. E. Tinch, J. B. Taggart, J. E. Bron, W. G. Starkey, B. J. McAndrew, D. W. Verner-Jeffreys, R. K. Paley, G. S. E. Rimmer, I. J. Tew, and S. C. Bishop. The susceptibility of Atlantic salmon fry to freshwater infectious pancreatic necrosis is largely explained by a major QTL. Heredity (Edinb), 105: 318–327 (2010).
  • Houston, R. D., S. C. Bishop, A. Hamilton, D. R. Guy, A. E. Tinch, J. B. Taggart, A. Derayat, B. J. McAndrew, and C. S. Haley. Detection of QTL affecting harvest traits in a commercial Atlantic salmon population. Anim. Genet., 40: 753–755 (2009).
  • Houston, R. D., A. Gheyas, A. Hamilton, D. R. Guy, A. E. Tinch, J. B. Taggart, B. J. McAndrew, C. S. Haley, and S. C. Bishop. Detection and confirmation of a major QTL affecting resistance to infectious pancreatic necrosis (IPN) in Atlantic salmon (Salmo Salar). Dev. Biol., (Basel) 132: 199–204 (2008a).
  • Houston, R. D., C. S. Haley, A. Hamilton, D. R. Guy, A. E. Tinch, J. B. Taggart, B. J. McAndrew, and S. C. Bishop. Major quantitative trait loci affect resistance to infectious pancreatic necrosis in Atlantic salmon (Salmo salar). Genetics, 178: 1109–1115 (2008b).
  • Houston, R. D., D. R. Guy, A. Hamilton, J. Ralph, N. Spreckley, J. B. Taggart, B. J. McAndrew, C. S. Haley, and S. C. Bishop. Mapping QTL affecting resistance to infectious pancreatic necrosis (IPN) in Atlantic salmon (Salmo salar). Aquaculture, 272: S269–S269 (2007).
  • Hunter, J. R., B. J. Macewicz, N. C. H. Lo, and C. A. Kimbrell. Fecundity, spawning and maturity of female Dover Sole (Microstomus pacificus). Fish. Bull. U.S. 90: 101–128 (1992).
  • Hutson, A. M. A QTL map for growth and morphometric traits using a channel catfish × blue catfish interspecific hybrid system (Ph.D Thesis). Aburn University (2008).
  • Iglesias, R., A. Parama, M. F. Alvarez, J. Leiro, J. Fernandez, and M. L. Sanmartın. Philasterides dicentrarchi (Ciliophora, Scuticociliatida) as the causative agent of scuticociliatosis in farmed turbot Scophthalmus maximus in Galicia (NW Spain). Dis. Aquat. Organ., 46: 47–55 (2001).
  • Iversen, M., B. Finstad, and K. Nilssen. Recovery from loading and transport stress in Atlantic salmon (Salmo salar L.) smolts. Aquaculture, 168: 387–394 (1998).
  • Jackson, T. R., M. M. Ferguson, R. G. Danzmann, A. G. Fishback, P. E. Ihssen, M. O’Connell, and T. J. Crease. Identification of two QTL influencing upper temperature tolerance in three Rainbow trout (Oncorhynchus mykiss) half-sib families. Heredity (Edinb), 80: 143–151 (1998).
  • Janhunen, M., A. Kause, E.A. Ma¨ntysaari, H. Vehvila¨inen, A. K. Præbel, O. Ja¨rvisalo, T. Paananen, and H. Koskinen. Homogenous stocks for on-growing: The KING method. Aquacult. Res., 44: 1847–1859 (2013).
  • Jin, S., X. Zhang, Z. Jia, H. Fu, X. Zheng, and X. Sun. Genetic linkage mapping and genetic analysis of QTL related to eye cross and eye diameter in Common carp (Cyprinus carpio L.) using microsatellites and SNPs. Aquaculture, 358–359: 176–182 (2012).
  • Korol, A., A. Shirak, A. Cnaani, and E. H. Hallerman. Marker-assisted selection for aquaculture Species, pp. 199–214. In: Detection and Analyses of Quantitative Trait Locus (QTL) in Aquatic species (Liu, Z. J. Ed.). Blackwell Publishing, Ames, Iowa, USA (2007).
  • Kroymann, J., S. Textor, J. G. Tokuhisa, K. L. Falk, S. Bartram, J. Gershenzon, and T. Mitchell-Olds. A gene controlling variation in Arabidopsis glucosinolate composition is part of the methionine chain elongation pathway. Plant Physiol., 127: 1077–1088 (2001).
  • Kuttner, E., H. K. Moghadam, S. Skulason, R. G. Danzmann, and M. M. Ferguson. Genetic architecture of body weight, condition factor and age of sexual maturation in Icelandic Arctic charr (Salvelinus alpinus). Mol. Genet. Genom., 286: 67–79 (2011).
  • Laghari, M. Y., Y. Zhang, P. Lashari, X. Zhang, P. Xu, B. Xin, and X. Sun. Quantitative trait loci (QTL) associated with growth rate trait in Common carp (Cyprinus carpio). Aqua Int., 21: 1373–1379 (2013).
  • Lallias, D., L. Gomez-Raya, C. S. Haley, I. Arzul, S. Heurtebise, A. R. Beaumont, P. Boudry, and S. Lapegue. Combining two-stage testing and interval mapping strategies to detect QTL for resistance to bonamiosis in the European flat oyster (Ostrea edulis). Marine Biotech., 11: 570–584 (2009).
  • Lande, R., and R. Thompson. Efficiency of marker-assisted selection in the improvement of quantitative traits. Genetics 124, 743–756. (1990).
  • Lander, E. S., and D. Botstein. Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics 121: 185–199 (1989).
  • Landless, P. J. Acclimation of Rainbow trout to seawater. Aquaculture, 7: 173–179 (1976).
  • Lashari, P., Y. Zhang, M. Y. Laghari, Wujing, X. Zhang, P. Xu, Y. Deng, and X. Sun. Qualitative Trait Loci (QTL) Analysis of Lactate Dehydrogenase (LDH) activity in Common Carp (Cyprinus carpio L.). Pak. J. Zool., 46(2): 383–390 (2014).
  • Le Bras, Y., N. Dechamp, F. Krieg, O. Filangi, R. Guyomard, M. Boussaha, H. Bovenhuis, T. G. Pottinger, P. Prunet, P. Le Roy, and E. Quillet. Detection of QTL with effects on osmoregulation capacities in the Rainbow trout (Oncorhynchus mykiss). BMC Genet., 12: 46 (2011).
  • Le Bras Y., N. Dechamp, J. Montfort, A. L. Cam, F. Krieg, E. Quillet, P. Prunet, and P. Le Roy. Acclimation to seawater in rainbow trout: QTL/eQTL approach for plasmatic ions and gill tissue, p 638. In: Proceedings of the 9th World Congress on Genetics Applied to Livestock Production: 1–6 August 2010. Leipzig, Germany, (2010).
  • Lee, B. Y., W. J. Lee, J. T. Streelman, K. L. Carleton, A. E. Howe, G. Hulata, A. Slettan, J. E. Stern, Y. Terai, and T. D. Kocher. A second-generation genetic linkage map of Tilapia (Oreochromis spp.). Genetics, 170: 237–244 (2005).
  • Lee, B. Y., G. Hulata, and T. D. Kocher. Two unlinked loci controlling the sex of Blue Tilapia (Oreochromis aureus). Heredity (Edinb), 92: 543–549 (2004).
  • Lee, B.Y., D. Penman, and T. Kocher. Identification of a sex-determining region in Nile tilapia (Oreochromis niloticus) using bulked segregant analysis. Anim. Genet., 34: 379–383 (2003).
  • Li, H., X. Liu, and G. Zhang. A consensus microsatellite-based linkage map for the hermaphroditic Bay scallop (Argopecten irradians) and its application in size-related QTL analysis. Plos One 7, e46926 (2012).
  • Li, O., D. Cao, Y. Zhang, Y. Gu, X. Zhang, C. Lu, and X. Sun. Studies on feed conversion ratio trait of Common carp (Cyprinus carpio L.) using EST-SSR marker. J. Fisheries CN. 33(4): 624–631 (2009).
  • Li, Y.T., L. Dierens, K. Byrne, E. Miggiano, S. Lehnert, N. Preston, and R. Lyons. QTL detection of production traits for the Kuruma prawn (Penaeus japonicus) (Bate) using AFLP markers. Aquaculture, 258: 198–210 (2006).
  • Liu, J., Y. Zhang, Y. Chang, L. Liang, C. Lu, M. Xu, and X. Sun. Mapping QTLs related to body weight and full size of Common Carp (Cyprinus carpio). J. Guang. Ocean Uni., 29(4): 19–24 (2009a).
  • Liu, J., Y. Zhang, Y. Chang, L. Liang, C. Lu, X. Zhang, M. Xu, and X. Sun. Mapping QTLs related to head length, eye diameter and eye cross of Common carp (Cyprinus carpio L.). Hereditas (Beijing). 31(5): 508–514 (2009b). [Chinese]
  • Lob, H. E., P. J. Marvar, T. J. Guzik, S. Sharma, L. A. McCann, C. Weyand, F. J. Gordon, and D. G. Harrison. Induction of hypertension and peripheral inflammation by reduction of extracellular superoxide dismutase in the central nervous system. Hypertension, 55(2): 277 (2010).
  • Loukovitis, D., E. Sarropoulou, C. Batargias, A. Apostolidis, G. Kotoulas, C. S. Tsigenopoulos, and D. Chatziplis. Quantitative trait loci for body growth and sex determination in the hermaphrodite teleost fish Sparus aurata L. Anim. Genet., 6: 753–759 (2012).
  • Loukovitis, D., E. Sarropoulou, C. S. Tsigenopoulos, C. Batargias, A. Magoulas, A. P. Apostolidis, D. Chatziplis, and G. Kotoulas. Quantitative trait loci involved in sex determination and body growth in the Gilthead sea bream (Sparus aurata L.) through targeted genome scan. Plos One 6, e16599 (2011).
  • Lu, X., H. Wang, B. Liu, and J. Xiang. Three EST-SSR markers associated with QTL for the growth of the clam (Meretrix meretrix) revealed by selective genotyping. Marine Biotech., 15(1): 16–25 (2013).
  • Lühmann, L., C. Knorr, G. Hörstgen-Schwark, and S. Wessels. First evidence for family-specific QTL for temperature-dependent sex reversal in Nile tilapia (Oreochromis niloticus). Sex. Develop., 6: 247–256 (2012).
  • Lyons, R. E., L. M. Dierens, S. H. Tan, N. P. Preston, and Y. Li. Characterization of AFLP markers associated with growth in the Kuruma prawn, (Marsupenaeus japonicus), and identification of a candidate gene. Marine Biotech., 9: 712–721 (2007).
  • Mackay, T. F. Quantitative trait loci in Drosophila. Nat. Rev. Genet., 1: 11–20 (2001).
  • Mao, R. X., F. J. Liu, X. F. Zhang, Y. Zhang, D. C. Cao, C. Y. Lu, L. Q. Liang, and X. W. Sun. Studies on quantitative trait loci related to activity of lactate dehydrogenase in Common carp (Cyprinus carpio). Yi Chuan (Hereditas). 31: 407–411 (2009). [Chinese]
  • Massault, C., R. Franch, C. Haley, D. J. De Koning, H. Bovenhuis, C. Pellizzari, T. Patarnello, and L. Bargelloni. Quantitative trait loci for resistance to fish pasteurellosis in Gilthead sea bream (Sparus aurata). Anim. Genet., 42: 191–203 (2010a).
  • Massault, C., B. Hellemans, B. Louro, C. Batargias, J. Van Houdt, A. Canario, F. A. M. Volckaert, H. Bovenhuis, C. Haley, and D. J. De Koning. QTL for body weight, morphometric traits and stress response in European sea bass Dicentrarchus labrax. Anim. Genet., 41: 337–345 (2010b).
  • Massault, C., H. Bovenhuis, C. Haley, and D. J. de Koning. QTL mapping designs for aquaculture. Aquaculture, 285: 23–29 (2008).
  • Martinez, P., C. Bouza, M. Hermida, J. Fernandez, M. A. Toro, M. Vera, B. Pardo, Millan, Adrian, C. Fernandez, R. Vilas, A. Vinas, L. Sanchez, A. Felip, F. Piferrer, I. Ferreiro, and S. Cabaleiro. Identification of the major sex-determining region of Turbot (Scophthalmus maximus). Genet., 183: 1443–1452 (2009).
  • Mauricio, R. Mapping quantitative trait loci in plants: Uses and caveats for evolutionary biology. Nat. Rev. Genet., 2(5): 370–81 (2001).
  • McClelland, E. K., and K. A. Naish. Quantitative trait locus analysis of hatch timing, weight, length and growth rate in Coho salmon, Oncorhynchus kisutch. Heredity (Edinb), 105: 562–573 (2010).
  • Miller, K. M., J. R. Winton, A. D. Schulze, M. K. Purcell, and T. J. Ming. Major histocompatibility complex loci are associated with susceptibility of Atlantic salmon to infectious hematopoietic necrosis virus. Environ. Biol. Fishes., 69: 307–316 (2004).
  • Misztal, I. Challenges of application of marker-assisted selection. Animal Sci Pap Rep., 24(1): 5–10 (2006).
  • Moen, T., M. Baranski, A. K. Sonesson, and S. Kjoglum. Confirmation and fine-mapping of a major QTL for resistance to infectious pancreatic necrosis in Atlantic salmon (Salmo salar): Population-level associations between markers and trait. BMC Genom., 10: 368 (2009).
  • Moen, T., A. K. Sonesson, B. Hayes, S. Lien, H. Munck, and T. H. E. Meuwissen. Mapping of a quantitative trait locus for resistance against infectious salmon anaemia in Atlantic salmon (Salmo Salar): Comparing survival analysis with analysis on affected/resistant data. BMC Genet., 8: 53 (2007).
  • Moen, T., J. J. Agresti, A. Cnaani, H. Moses, T. R. Famula, G. Hulata, G. A. E. Gall, and B. May. A genome scan of a four-way tilapia cross supports the existence of a quantitative trait locus for cold tolerance on linkage group 23. Aquacult. Res., 35: 893–904 (2004).
  • Moghadam, H. K., M. M. Ferguson, and R. G. Danzmann. Linkage variation at the sex-determining locus within Fraser strain Arctic charr Salvelinus alpinus. J. Fish Biol., 71: 294–301 (2007a).
  • Moghadam, H. K., J. Poissant, H. Fotherby, L. Haidle, M. M. Ferguson, and R. G. Danzmann. Quantitative trait loci for body weight, condition factor and age at sexual maturation in Arctic charr (Salvelinus alpinus): Comparative analysis with Rainbow trout (Oncorhynchus mykiss) and Atlantic salmon (Salmo salar). Mol. Genet. Genom., 277: 647–661 (2007b).
  • Morin, P. A., G. Luikart, and R. K. Wayne. SNPs in ecology, evolution and conservation. Trend Eco Evol., 19: 208 (2004).
  • Nichols, K. M., P. A. Wheeler, and G. H. Thorgaard. Quantitative trait loci analyses for meristic traits in Oncorhynchus mykiss. Env. Biol. Fishes., 69: 317–331 (2004).
  • Nichols, K. M., J. Bartholomew, and G. H. Thorgaard. Mapping multiple genetic loci associated with Ceratomyxa shasta resistance in Oncorhynchus mykiss. Dis. Aquat. Organ., 56: 145–54 (2003).
  • Nichols, K. M. Quantitative trait loci analyses of divergent phenotypes in Oncorhynchus mykiss. Ph.D. dissertation, Washington State University, Pullman WA, 142 pp. (2002).
  • Ninwichian, P., E. Peatman, D. Perera, S. Liu, H. Kucuktas, R. Dunham, and Z. Liu. Identification of a sex-linked marker for Channel catfish. Anim. Genet., 43: 474–481 (2012).
  • Norman, J. D., M. Robinson, B. Glebe, M. M. Ferguson, and R. G. Danzmann. Genomic arrangement of salinity tolerance QTLs in salmonids: A comparative analysis of Atlantic salmon (Salmo salar) with Arctic charr (Salvelinus alpinus) and Rainbow trout (Oncorhynchus mykiss). BMC Genom., 13: 420 (2012).
  • Norman, J. D., R. G. Danzmann, B. Glebe, and M. M. Ferguson. The genetic basis of salinity tolerance in Arctic charr (Salvelinus alpinus). BMC Genet., 12: 81 (2011).
  • O’Malley, K. G, E. K. McClelland, and K. A. Naish. Clock genes localize to quantitative trait loci for stage-specific growth in juvenile Coho salmon, Oncorhynchus kisutch. J. Hered., 101: 628–632 (2010).
  • O’Malley, K. G., T. Sakamoto, R. G. Danzmann, and M. M. Ferguson. Quantitative Trait Loci for spawning date and body weight in Rainbow Trout: Testing for conserved effects across ancestrally duplicated chromosomes. J. Hered., 94(4): 273–284 (2003).
  • Ozaki, A., H. Okamoto, T. Yamada, T. Matuyama, T. Sakai, K. Fuji, T. Sakamoto, N. Okamoto, K. Yoshida, K. Hatori, K. Araki, and M. Okauchi. Linkage analysis of resistance to Streptococcus iniae infection in Japanese flounder (Paralichthys olivaceus). Aquaculture, 308: S62–S67 (2010).
  • Ozaki, A., T. Sakamoto, S. Khoo, K. Nakamura, M. R. M. Coimbra, T. Akutsu, and N. Okamoto. Quantitative trait loci (QTLs) associated with resistance/susceptibility to infectious pancreatic necrosis virus (IPNV) in Rainbow trout (Oncorhynchus mykiss). Mol. Genet. Genom., 265: 23–31 (2001).
  • Palti, Y., R. L. Vallejo, T. J. Welch, J. Evenhuis, T. D. Leeds, S. Liu, C. E. Rexroad, and G. D. Wiens. Detection of quantitative trait loci (QTL) for resistance to bacterial cold water disease and spleen size in Rainbow trout. Aquacult. Am. Conf., 4 (2011).
  • Palti, Y., K. M. Nichol, K. I. Waller, J. E. Parsons, and G. H. Thorgaard. Association between DNA polymorphisms tightly linked to MHC class II genes and IHN virus resistance in backcrosses of Rainbow and Cutthroat trout. Aquaculture, 194: 283–289 (2001).
  • Palti, Y., J. E. Parsons, and G. H. Thogard. Identification of candidate DNA markers associated with IHN virus resistance in backcrosses of Rainbow (Oncorhynchus mykiss) and Cutthroat trout (O. clarki). Aquaculture, 173: 81–94 (1999).
  • Pankhurst, N. W., and H. R. King. Temperature and salmonid reproduction: Implications for aquaculture. J. Fish. Biol., 76: 69–85 (2010).
  • Perry, G. M. L., R. G. Danzmann, M. M. Ferguson, J. P. Gibson. Quantitative trait loci for upper thermal tolerance in outbred strains of Rainbow trout (Oncorhynchus mykiss). Heredity (Edinb), 86: 333–341 (2001).
  • Perry, G. M. L., M. M. Ferguson, T. Sakamoto, and R. G. Danzmann. Sex-linked quantitative trait loci for thermotolerance and length in the Rainbow trout. J. Hered., 96: 97–107 (2005).
  • Petersen, J. L., B. M. R. Baerwald, A. M. Ibarra, and B. May. A first-generation linkage map of the Pacific lion-paw scallop (Nodipecten subnodosus): Initial evidence of QTL for size traits and markers linked to orange shell colour. Aquaculture, 350: 200–209 (2012).
  • Qin, Y., L. Xiao, H. Zhang, G. Zhang, and X. Guo. Identification and mapping of AFLP markers linked to shell colour in Bay scallop, Argopecten irradians (Lamarck, 1819). Marine Biotech., 9: 66–73 (2007a).
  • Qin, Y. J., X. Liu, H. B. Zhang, G. F. Zhang, and X. M. Guo. Genetic mapping of size-related quantitative trait loci (QTL) in the Bay scallop (Argopecten irradians) using AFLP and microsatellite markers. Aquaculture, 272: 281–290 (2007b).
  • Quillet, E., F. Krieg, N. Dechamp, C. Hervet, P. Le Roy, and T. G. Pottinger. Mapping QTL affecting cortisol response to confinement stress in Rainbow trout. In: 9th World Congress on Genetics Applied to Livestock Production. Leipzig, Germany, August 1–6 (2010).
  • Quinn, N. L., C. R. McGowan, G. A. Cooper, B. F. Koop, and W. S. Davidson. Identification of genes associated with heat tolerance in Arctic charr exposed to acute thermal stress. Physio. Genom., 43: 685–696 (2011).
  • Quinn, T. P., J. A. Peterson, V. F. Gallucci, W. K. Hershberger, and E. L. Brannon. Artificial selection and environmental change: Countervailing factors affecting the timing of spawning by Coho and Chinook salmon. Trans. Am. Fish. Soc., 131: 591–598 (2002).
  • Rakus, K. L., G. F. Wiegertjes, M. Adamek, A. K. Siwicki, A. Lepa, and I. Irnazarow. Resistance of Common carp (Cyprinus carpio L.) to Cyprinid herpesvirus-3 is influenced by major histocompatibility (MH) class II B gene polymorphism. Fish. Shell. Immun., 26: 737–743 (2009).
  • Ramstad, A., and P. J. Midtlyng. Strong genetic influence on IPN vaccination-and challenge trials in Atlantic salmon, Salmo salar L. J. Fish Dis., 31(8): 567–578 (2008).
  • Reid, D. T., and C. L. Peichel. Perspectives on the genetic architecture of divergence in body shape in Sticklebacks. Int. Comp. Biol., 50: 1057–1066 (2010).
  • Reid, D. P., A. Szanto, B. Glebe, R. G. Danzmann, and M. M. Ferguson. QTL for body weight and condition factor in Atlantic salmon (Salmo salar): Comparative analysis with Rainbow trout (Oncorhynchus mykiss) and Arctic charr (Salvelinus alpinus). Heredity (Edinb), 94: 166–172 (2005).
  • Rengmark, A. H., A. Slettan, W. J. Lee, O. Lie, and F. Lingaas. Identification and mapping of genes associated with salt tolerance in Tilapia. J. Fish. Biol., 71: 409–422 (2007).
  • Rexroad, C. E., S. Liu, G. Gao, Y. Palti, G. M. Weber, and R. L. Vallejo. Identifying genes affecting stress response in Rainbow trout. Aquacul. Conf. Proced., P0182 (2013).
  • Rexroad, C. E., L. V. Roger, S. Liu, Y. Palti, and G. M. Weber. QTL affecting stress response to crowding in a Rainbow trout broodstock population. BMC Genet., 13: 97 (2012).
  • Rockman, M. V., and L. Kruglyak. Genetics of global gene expression. Nat. Rev. Genet., 7: 862–872 (2006).
  • Robinson, M. R., B. Glebe, R. G. Danzmann, and M. M. Ferguson. Osmoregulatory quantitative trait loci (QTL) in early smolting Atlantic salmon (Salmo salar). Aquaculture, 247: 29–29 (2005).
  • Robison, B. D., P. A. Wheeler, K. Sundin, P. Sikka, and G. H. Thorgaard. Composite interval mapping reveals a major locus influencing embryonic development rate in Rainbow trout (Oncorhynchus mykiss). J. Hered., 92: 16–22 (2001).
  • Rodriguez, M. F., S. La Patra, S. Williams, T. Famula, and B. May. Genetic markers associated with resistance to infectious hematopoietic necrosis in Rainbow and Steelhead trout (Oncorhynchus mykiss) backcrosses. Aquaculture, 241: 93–115 (2004).
  • Rodriguez-Ramilo, S., J. Fernández, M. Toro, C. Bouza, M. Hermida, C. Fernández, B. G. Pardo, S. Cabaleiro, and P. Martinez. Uncovering QTL for resistance and survival time to Philasterides dicentrarchi in Turbot (Scophthalmus maximus). Anim. Genet., 44(2): 149–157 (2012).
  • Rodriguez-Ramilo, S. T., M. A. Toro, C. Bouza, M. Hermida, B. G. Pardo, S. Cabaleiro, P. Martinez, and J. Fernandez. QTL detection for Aeromonas salmonicida resistance related traits in Turbot (Scophthalmus maximus). BMC Genom., 12: 541 (2011).
  • Sakamoto, T., R. G. Danzmann, K. Gharbi, P. Howard, A. Ozaki, K. Sokkean, R. A. Woram, N. Okamoto, M. M. Ferguson, L. E. Holm, R. Guyomard, B. Hoyheim. A microsatellite linkage map of Rainbow trout (Oncorhynchus mykiss) characterized by large sex-specific differences in recombination rates. Genetics, 155: 1331–1345 (2000).
  • Sanchez-Molano, E., A. Cerna, M. A. Toro, C. Bouza, M. Hermida, B. G. Pardo, S. Cabaleiro, J. Fernandez, and P. Martines. Detection of growth-related QTL in Turbot (Scophthalmus maximus). BMC Genom., 12: 473 (2011).
  • Sauvage, C., M. Vagner, N. Derôme, C. Audet, and L. Bernatchez. Coding gene SNP mapping reveals QTL linked to growth and stress response in Brook charr (Salvelinus fontinalis). G3: Gene. Genom. Genet., 2: 707–720 (2012).
  • Sauvage, C., P. Boudry, D. J. De Koning, C. S. Haley, S. Heurtebise, and S. Lapegue. QTL for resistance to summer mortality and OsHV-1 load in the Pacific oyster (Crassostrea gigas). Anim. Genet., 41: 390–399 (2010).
  • Sax, K. Association of size differences with seed-coat pattern and pigmentation in Phaseolus vulgaris. Genetics, 8: 552–560 (1923).
  • Shirak, A., M. Golik, B. Y. Lee, A. E. Howe, T. D. Kocher, G. Hulata, M. Ron, and E. Seroussis. Copy number variation of lipocalin family genes for male-specific proteins in Tilapia and its association with gender. Heredity (Edlinb), 101: 405–415 (2008).
  • Slate, J. Quantitative trait locus mapping in natural populations: Progress, caveats and future directions. Mol. Ecol., 14: 363–379 (2005).
  • Somorjai, I. M. L., R.G. Danzmann, and M. M. Ferguson. Distribution of temperature tolerance quantitative trait loci in Arctic charr (Salvelinus alpinus) and inferred homologies in Rainbow trout (Oncorhynchus mykiss). Genetics, 165: 1443–1456 (2003).
  • Song, W., Y. Li, Y. Zhao, Y. Liu, Y. Niu, R. Pang, G. Miao, X. Liao, C. Shao, F. Gao, and S. Chen. Construction of a high-density microsatellite genetic linkage map and mapping of sexual and growth-related traits in half-smooth tongue sole (Cynoglossus semilaevis). PLOS ONE 7(12): e52097 (2012).
  • Staelens, J., D. Rombaut, I. Vercauteren, B. Argue, J. Benzie, and M. Vuylsteke. High-density linkage maps and sex-linked markers for the Black Tiger shrimp (Penaeus monodon). Genetics, 179: 917–925 (2008).
  • Sterud, E., M. K. Hansen, and T. A. Mo. Systemic infection with Uronema-like ciliates in farmed Turbot, Scophthalmus maximus (L.). J. Fish. Disease., 23: 33–37 (2000).
  • Sun, X. W., and L. Liang. A genetic linkage map of Common carp (Cyprinus carpio L.) and mapping of a locus associated with cold tolerance. Aquaculture, 238: 165–172 (2004).
  • Sundin, K., K. H. Brown, R. E. Drew, K. M. Nichols, P. A. Wheeler, and G. H. Thorgaard. Genetic analysis of a development rate QTL in backcrosses of clonal Rainbow trout, Oncorhynchus mykiss. Aquaculture, 247: 75–83 (2005).
  • Tao, W. J., and E. G. Boulding. Association between single nucleotide polymorphisms in candidate genes and growth rate in Arctic charr (Salvelinus alpinus L.). Heredity (Edinb), 91: 60–69 (2003).
  • Thorpe, J. E., and N. Metcalfe. Is smolting a positive or a negative developmental decision. Aquaculture, 168: 95–103 (1998).
  • Vallejo, R. L., C. E. Rexroad, J. T. Silverstein, L. L. G. Janss, and G. M. Weber. Evidence of major genes affecting stress response in Rainbow trout using Bayesian methods of complex segregation analysis. J. Anim. Sci., 87: 3490–3505 (2009).
  • Vasemagi, A., R. Gross, D. Palm, T. Paaver, and C. R. Primmer. Discovery and application of insertion-deletion (INDEL) polymorphisms for QTL mapping of early life-history traits in Atlantic salmon. BMC Genom., 11: 156 (2010).
  • Vinas, A., X. Taboada, L. Vale, D. Robledo, M. Hermida, M. Vera, and P. Martinez. Mapping of DNA sex-specific markers and genes related to sex differentiation in Turbot (Scophthalmus maximus). Marine Biotech., 14: 655–663 (2012).
  • Vincent, E. R. Relative susceptibility of various salmonids to whirling disease with emphasis on Rainbow and Cutthroat trout, pp 109–115. In: American Fisheries Society, Vol. Whirling disease: Reviews and Current Topics; Symposium 29 (Bartholomew, J. L., and Wilson, J. C. Eds.). Bethesda, MD. (2002).
  • Von, B. D., E. Andre, F. Hentges, B. Thomas, T. Michel, and J. Zimmer. Natural killer cells in atopic and autoimmune diseases of the skin. J. Allergy. Clin. Immun., 125(1): 60–67 (2010).
  • Wang, J., A. He, Y. Ma, and C. Wang. Genetic map construction and quantitative trait locus (QTL) analysis on growth-related traits in Common carp (Cyprinus carpio L.). African J. Biotech., 11(31): 7874–7884 (2012a).
  • Wang, W., Y. Tian, J. Kong, X. Li, X. Liu, and C. Yang. Integration genetic linkage map construction and several potential QTLs mapping of Chinese shrimp (Fenneropenaeus chinensis) based on three types of molecular markers. Genetika 48(4): 508–21 (2012b).
  • Wang, X., X. Zhang, W. Li, T. Zhang, C. Li, and X. Sun. Mapping and genetic effect analysis on quantitative trait loci related to feed conversion ratio of Common carp (Cyprinus carpio L.). Acta Hydrobiol. Sin., 36(2): 177–196 (2012c).
  • Wang, C. M., L. C. Lo, Z. Y. Zhu, H. Y. Pang, H. M. Liu, J. Tan, H. S. Lim, R. Chou, L. Orban, and G. H. Yue. Mapping QTL for an adaptive trait: The length of caudal fin in Lates calcarifer. Marine Biotech., 13: 74–82 (2011).
  • Wang, C. M., L. C. Lo, F. Feng, Z. Y. Zhu, and G. H. Yue. Identification and verification of QTL associated with growth traits in two genetic backgrounds of Barramundi (Lates calcarifer). Anim. Genet., 39: 34–39 (2008).
  • Wang, C. M., L. C. Lo, Z. Y. Zhu, and G. H. Yue. A genome scan for quantitative trait loci affecting growth-related traits in an F1 family of Asian seabass (Lates calcarifer). BMC Genom., 7: 274 (2006).
  • Wang, S., J. J. Hard, and F. Utter. Genetic variation and fitness in salmonids. Conserv. Genet., 3: 321–333 (2002).
  • Wedemeyer, G. Physiology of Fish in Intensive Culture Systems. Chapman and Hall, London, UK (1996).
  • Wood, C. M., and D. G. McDonald. Global warming: Implications for freshwater and marine fish. Society for Experimental Biology Seminar Series 61. Cambridge University Press, Cambridge, U.K (1997).
  • Wringe, B. F., R. H. Devlin, M. M. Ferguson, H. K. Moghadam, D. Sakhrani, and R. G. Danzmann. Growth-related quantitative trait loci in domestic and wild Rainbow trout (Oncorhynchus mykiss). BMC Genet., 11: 63 (2010).
  • Xu, Y., X. Zhang, X. Zheng, Y. Kuang, C. Lu, D. Cao, S. Yin, C. Li, and X. Sun. Studies on quantitative trait loci related to superoxide dismutase in Mirror carp (Cyprinus carpio L.). Aquacult. Res., 1–12. doi:10.1111/j.1365–2109.2012.03191.x (2012).
  • Xu, T., S. Chen, X. Ji, and Y. Tian. MHC polymorphism and disease resistance to Vibrio anguillarum in 12 selective Japanese flounder (Paralichthys olivaceus) families. Fish. Shellfish. Immun., 25: 213–221 (2008).
  • Xu, Y., Z. Zhu, L. Lo, C. Wang, G. Lin, F. Feng, and G. H. Yue. Characterization of two parvalbumin genes and their association with growth traits in Asian seabass (Lates calcarifer). Anim. Genet., 37(3): 266–268 (2006).
  • Yu, Z. N., and X. M. Guo. Identification and mapping of disease-resistance QTLs in the Eastern oyster, Crassostrea virginica Gmelin. Aquaculture, 254: 160–170 (2006).
  • Yue, G. H. Recent advances of genome mapping and marker-assisted selection in aquaculture. Fish. Fisheries., DOI: 10.1111/faf.12020 (2012).
  • Zhan, A. B., J. Hu, X. Hu, M. Hui, M. Wang, W. Peng, X. Huang, S. Wang, W. Lu, C. Sun, and Z. M. Bao. Construction of microsatellite based linkage maps and identification of size-related quantitative trait loci for Zhikong scallop (Chlamys farreri). Anim. Genet., 40: 821–831 (2009).
  • Zhang, Y., S. Wang, J. Li, X. Zhang, L. Jiang, P. Xu, C. Lu, Y. Wang, and X. Sun. Primary genome scan for complex body shape-related traits in the Common carp Cyprinus carpio. J. Fish. Biol., 82: 125–140 (2013).
  • Zhang, T., X. Zhang, Z. Tan, Z. Cao, X. Wang, W. Li, Z. Chu, and X. Sun. Mapping and genetic effect analysis of quantitative trait loci related to body length in Mirror carp (Cyprinus carpio L.). Hereditas (Beijing). 33(11): 1245–1250 (2011). [Chinese]
  • Zhang, L., X. Zhang, D. Cao, J. Yang, Z. Chu, and X. Sun. QTL analysis related to feed conversion efficiency in Common carp (Cyprinus carpio) using SSR and EST markers. J. Agr. Biotech., 18(5): 963–967 (2010).
  • Zhang, L., X. Guo, D. Bushek, and S. E. Ford. Mapping quantitative trait loci conferring Dermo resistance in the Eastern oyster Crassostrea virginica. J. Shellfish. Res., 27(4): 1067 (2008).
  • Zhang, L. S., C. J. Yang, Y. Zhang, L. Li, X. M. Zhang, Q. L. Zhang, and J. Xiang. A genetic linkage map of Pacific white shrimp (Litopenaeus vannamei): Sex-linked microsatellite markers and high recombination rates. Genetica., 131: 37–49 (2007).
  • Zhang, Y., L. Liang, Y. Chang, N. Hou, Y. Lu, and X. Sun. Mapping quantitative trait loci and analysis of genetic effect related to body size in Common carp (Cyprinus carpio L.). Hereditas (Beijing). 29(10): 1243–1248 (2007). [Chinese]
  • Zheng, X., Y. Kuang, C. Lu, X. Wang, W. Li, W. Lu, and X. Sun. Quantitative trait locus analysis of standard length, body depth and body thickness in Mirror carp (Cyprinus carpio L.). Hereditas (Beijing). 33(12): 1366–1373 (2011). [Chinese]
  • Zimmerman, A. M., P. A. Wheeler, S. S. Ristow, and G. H. Thorgaard. Composite interval mapping reveals three QTL associated with pyloric caeca number in Rainbow trout, Oncorhynchus mykiss. Aquaculture, 247: 85–95 (2005).
  • Zimmerman, A. M., J. P. Evenhuis, G. H. Thorgaard, and S. S. Ristow. A single major chromosomal region controls natural killer cell-like activity in Rainbow trout. Immunogenetics, 55: 825–835 (2004).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.