1,345
Views
39
CrossRef citations to date
0
Altmetric
Reviews

Recent Advances in Application of Nanoparticles in Fish Vaccine Delivery

, , , , , & show all

References

  • Adomako, M., S. St-Hilaire, Y. Zheng, J. Eley, R. D. Marcum, W. Sealey, B. C. Donahower, S. LaPatra, and P. P. Sheridan. Oral DNA vaccination of rainbow trout, Oncorhynchus mykiss (Walbaum), against infectious haematopoietic necrosis virus using PLGA [Poly (D, L-Lactic-Co-Glycolic Acid)] nanoparticles. J. Fish Dis., 35: 203–214 (2012).
  • Aravena, A. R., Y. Fuentes, J. Cartagena, T. Brito, V. Poggio, J. L. Torre, H. Mendoza, F. G. Nilo, A. M. Sandino, and E. Spencer. Development of a nanoparticle-based oral vaccine for Atlantic salmon against ISAV using an alphavirus replicon as adjuvant. Fish Shellfish Immunol., 45: 157–166 (2015).
  • Aravena, A. R., A. N. Sandino, and E. Spencer. Nanoparticles of polymers and polysaccharides to administer fish vaccines. Biol. Res., 46: 407–419 (2013).
  • Arca, H. C., M. Gunbeyaz, and S. Senel. Chitosan-based systems for the delivery of vaccine antigens. Exp. Rev. Vac., 8: 937–953 (2009).
  • Ballesteros, N. A., R. Castro, R. Abos, S. J. S. S. Rodriguez, P. S. I. Perez, and C. Tafalla. The pyloric caeca area is a major site for IgM (+) and IgT (+) B cell recruitment in response to oral vaccination in rainbow trout. PLoS One, 8: e66118 (2013).
  • Behera, T., and P. Swain. Antigen adsorbed calcium phosphate nanoparticles stimulate both innate and adaptive immune response in fish, Labeo rohita H. Cell. Immunol., 271: 250–259 (2011).
  • Boutinguiza, M., J. Pou, R. Lusquinos, A. Comesana, and A. Riverio. Laser assisted production of tricalcium phosphate nanoparticles from biological and synthetic hydroxyapatite in aqueous medium. Appl. Surf. Sci., 257: 5195–5199 (2011).
  • Bowden, T. J., K. Adamson, P. Maclachlan, C. C. Pert, and I. R. Bricnell. Long-term study of antibody response and injection-site effects of oil adjuvants in Atlantic halibut (Hippoglossus hippoglossus L.). Fish Shellfish Immunol., 14: 363–369 (2003).
  • Braden, B. C., F. A. Goldbaum, B. X. Chen, A. N. Kirschner, S. R. Wilson, and B. F. Erlanger. X-ray crystal structure of an anti-Buckminsterfullerene Antibody Fab fragment: Biomolecular recognition of C60. P. N. A. S: USA, 97: 12193–12197 (2000).
  • Brudeseth, B. E., R. Wiulsrod, B. N. Fredriksen, K. Lindmo, K. E. Lokling, M. Bordevik, N. Steine, A. Klevan, and K. Gravningen. Status and future prospects of vaccines for industrialized fin-fish farming. Fish Shellfish Immunol., 35: 1759–1768 (2013).
  • Carmen, W. E. E., and L. Forlenza. Oral vaccination of fish: lessons from humans and veterinary species. Dev. Comp. Immunol., 64: 118–137 (2016).
  • Cavalieri, F., M. Tortora, A. Stringaro, M. Colone, and L. Baldassarri. Nanomedicines for antimicrobial interventions. J. Hosp. Infect., 88: 183–190 (2014).
  • Chen, B. X., S. R. Wilson, M. Das, D. J. Coughlin, and B. F. Erlanger. (1998) Antigenicity of fullerenes: Antibodies specific for fullerenes and their characteristics. P. N. A. S: USA, 95: 0809–10813 (1998).
  • Corradin, G., and G. D. Giudice. Novel Adjuvants for Vaccines. Novel adjuvants for vaccines. Curr. Med. Chem.-Anti-Inflam. Anti-Allergy Agents, 4: 185–191 (2005).
  • Demento, S. L., N. Bonafe, W. Cui, S. M. Kaech, M. J. Caplan, E. Fikrig, M. Ledizet, and T. M. Fahmy. TLR9-targeted biodegradable nanoparticles as immunization vectors protect against west nile encephalitis. J. Immunol., 185: 2989–2997 (2010).
  • Doll, T. A., S. Raman, R. Dey, and P. Burkhard. Nanoscale assemblies and their biomedical applications. J. R. Soc. Interf., 10: 20120740 (2013).
  • Dong, C. F., T. L. Lin, H. Gong, Y. S. D. Ou, and S. Yang. Major outer membrane protein (MOMP) of Aeromonas hydrophila induced protective immunity to European eels (Anguilla anguilla). Acta Hydrobiol. Sin., 29: 285–290 (2005).
  • Dorozhkin, S. V., and M. Epple. Biological and medical significance of calcium phosphates. Angew. Chem. Int. Ed., 41: 3130–3146 (2002).
  • Drangsholt, T. M. K., B. Gjerde, J. Ødegård, F. Fridell, and H. B. Bentsen. Quantitative genetics of vaccine-induced side effects in farmed Atlantic salmon (Salmo salar). Aquaculture, 318: 316–324 (2011).
  • Dubey, S., K. Avadhani, S. Mutalik, S. M. Sivadasan, B. Maiti, J. Paul, S. K. Girisha, M. N. Venugopal, S. Mutoloki, O. Evensen, I. Karunasagar, and H. M. Munang'andu. Aeromonas hydrophila OmpW PLGA nanoparticle oral vaccine shows a dose-dependent protective immunity in rohu (Labeo rohita). Vaccines, 4: 21 (2016).
  • Elsaesser, A., and C. V. Howard. Toxicology of nanoparticles. Adv. drug del. Rev., 64: 129–137 (2012).
  • Evensen, Ø. Development in fish vaccinology with focus on delivery methodologies, adjuvants and formulations. Use Veterinary Drugs Vaccines Mediterranean Aquaculture, 86: 177–186 (2009).
  • Evensen, Ø., B. Brudeseth, and S. Mutoloki. The vaccine formulation and its role in inflammatory processes in fish-Effects and adverse effects. Dev. Biol., 121: 117–125 (2005).
  • FAO. The State of World Fisheries and Aquaculture. Rome, Italy: FAO Fisheries and Aquaculture Department (2016).
  • Fifis, T., A. Gamvrellis, B. Crimeen-Irwin, G. A. Pietersz, J. Li, P. L. Mottram, I. F. McKenzie, and M. Plebanski. Size-dependent immunogenicity: Therapeutic and protective properties of nano-vaccines against tumors. J. Immunol., 173: 3148–3154 (2004).
  • Fredriksen, B. N., and J. Grip. PLGA/PLA micro-and nanoparticle formulations serve as antigen depots and induce elevated humoral responses after immunization of Atlantic salmon (Salmo salar L.). Vaccine, 30: 656–667 (2012).
  • Fredriksen, B. N., K. Saevareid, L. McAuley, M. E. Lane, J. Bogwald, and R. A. Dalmo. Early immune responses in Atlantic salmon (Salmo salar L.) after immunization with PLGA nanoparticles loaded with a model antigen and β-glucan. Vaccine, 29: 8338–8349 (2011).
  • Frohlich, E. The role of surface charge in cellular uptake and cytotoxicity of medical nanoparticles. Int. J. Nanomed., 7: 5577–5591 (2012).
  • Gregory, A. E., R. Titball, and D. Williamson. Vaccine delivery using nanoparticles. Front. Cell. Infect. Mi., 3: 3389 (2013).
  • Hansen, J. D., E. D. Landis, and R. D. Phillips. Discovery of a unique Ig heavy-chain isotype (IgT) in rainbow trout: implications for a distinctive B cell developmental pathway in teleost fish. P. N. A. S. USA, 102: 6919–6924 (2005).
  • Harikrishnan, R., J. S. Kim, C. Balasundaram, and M. S. Heo. Vaccination effect of liposomes entrapped whole cell bacterial vaccine on immune response and disease protection in Epinephelus bruneus against Vibrio harveyi. Aquaculture, 342: 69–74 (2012).
  • Heidarieh, M., S. Moodi, K. K. Katuli, and H. Unger. Biochemical effects of encapsulated Radiovaccine via alginate nanoparticles as strategy for booster in immunized rainbow trout against Ichthyophytirius multifiliis. Acta Sci. Vet., 43: 1330 (2015).
  • Hølvold, L. B., F. N. Børge, B. Jarl, and R. A. Dalmo. Transgene and immune gene expression following intramuscular injection of Atlantic salmon (Salmo salar L.) with DNA-releasing PLGA nano- and microparticles. Fish Shellfish Immunol., 35(3): 890–899 (2013).
  • Hu, Y. L., L. X. Xiang, and J. Z. Shao. Identification and characterization of a novel immunoglobulin Z isotope in zebrafish: Implications for a distinct B cell receptor in lower vertebrates. Mol. Immunol., 47: 738–746 (2010).
  • Irie, T., S. Watarai, T. Iwasaki, and H. Kodama. Protection against experimental Aeromonas salmonicida infection in carp by oral immunization with bacterial antigen entrapped liposomes. Fish Shellfish Immunol., 18: 235–242 (2005).
  • Jaradat, Z. W. Nanotechnology and its role in advancing medicine. JSM Nanotech. Nanomed., 1: 1012 (2013).
  • Ji, J., D. Torrealba, A. Rurya, and N. Roher. Nanodelivery systems as new tools for immunostimulant or vaccine administration: Targeting the fish immune system. Biology, 4: 664–696 (2015).
  • Kavaliauskis, A., M. Arnemo, M. Speth, L. Lagos, A. L. Rishovd, A. Estepa, G. Griffiths, and T. Gjoen. Protective effect of recombinant VHSV-G vaccine using poly (I:C) loaded nanoparticles as an adjuvant in zebrafish (Danio rerio) infection model. Dev. Comp. Immunol., 61: 248–257 (2016).
  • Kim, M. G., J. Y. Park, Y. Shon, G. Kim, G. Shim, and Y. K. Oh. Nanotechnology and vaccine development. Asian J. Pharma. Sci., 9: 227–235 (2014).
  • Lai, W., Z. Hu, and Q. Fang. The concerns on biosafety of nanomaterials. JSM Nanotech. Nanomed., 1: 1009 (2013).
  • Lee, S. C., R. Parthasarathy, K. Botwin, D. Kunneman, E. Rowold, G. Lange, J. Klover, A. Abegg, J. Zobel, T. Beck, T. Miller, W. Hood, J. Monahan, J. P. McKearn, R. Jansson, and C. F. Voliva. Biochemical and immunological properties of cytokines conjugated to dendritic polymers. Biomed. Microdev., 6: 191–202 (2004).
  • Li, L., S. L. Lin, L. Deng, and Z. G. Liu. Potential use of chitosan nanoparticles for oral delivery of DNA vaccine in black seabream Acanthopagrus schlegelii Bleeker to protect from Vibrio parahaemolyticus. J. Fish Dis., 36: 987–995 (2013).
  • Liu, Y., F. Q. Wang, Z. Shah, X. J. Cheng, M. Kong, C. Feng, and X. G. Chen. Nano-polyplex based on oleoyl-carboxymethyl-chitosan (OCMCS) and hyaluronic acid for oral gene vaccine delivery. Coll. Surf. B: Biointerf., 145: 492–501 (2016).
  • Liu, Z., S. Tabakman, K. Welsher, and H. Dai. Carbon nanotubes in biology and medicine: In vitro and in vivo detection, imaging and drug delivery. Nano Res., 2: 85–120 (2009).
  • Magnadottir, B. Innate immunity of fish (overview). Fish Shellfish Immunol., 20: 137–151 (2006).
  • Mamo, T., and G. A. Poland. Nanovaccinology: The next generation of vaccines meets 21st century materials science and engineering. Vaccine, 30: 6609–6611 (2012).
  • Manolova, V., A. Flace, M. Bauer, K. Schwarz, P. Saudan, and M. F. Bachmann. Nanoparticles target distinct dendritic cell populations according to their size. E. J. Immunol., 38: 1404–1413 (2008).
  • Marasini, N., M. Skwarczynski, and I. Toth. Oral delivery of nanoparticle-based vaccines. Exp. Rev. Vac., 13: 1361–1376 (2014).
  • Midtlyng, P. J., and A. Lillehaug. Growth of Atlantic salmon (Salmo salar) after intraperitoneal administration of vaccines containing adjuvants. Dis. Aquat. Org., 32: 91–97 (1998).
  • Midtlyng, P. J., L. J. Reitan, A. Lillehaug, and A. Ramstad. Protection, immune responses and side effects in Atlantic salmon (Salmo salar L.) vaccinated against furunculosis by different procedures. Fish Shellfish Immunol., 6: 599–613 (1996).
  • Minigo, G., A. Scholzen, C. K. Tang, J. C. Hanley, M. Kalkanidis, G. A. Pietersz, V. Apostolopoulos, and M. Plebanski. Poly-L-lysine-coated nanoparticles: A potent delivery system to enhance DNA vaccine efficacy. Vaccine, 25: 1316–1327 (2007).
  • Mitchell, L. A., J. Gao, R. V. Wal, A. Gigliotti, S. W. Burchiel, and J. D. McDonald. Pulmonary and systemic immune response to inhaled multiwalled carbon nanotubes. Toxicol. Sci., 100: 203–214 (2007).
  • Mottram, P., D. Leong, B. Crimeen-Irwin, S. Gloster, S. D. Xiang, J. Meanger, R. Ghildyal, N. Vardaxis, and M. Plebanski. Type 1 and type 2 immunity following vaccination is influenced by nanoparticle size: Formulation of a model vaccine for respiratory syncytial virus. Mol. Pharm., 4: 73–84 (2007).
  • Mummert, M. E. Immunologic roles of hyaluronan. Immunol. Res., 31: 189–206 (2005).
  • Munang'andu, H. M., B. N. Fredriksen, S. Mutoloki, B. Brudeseth, T. Y. Kuo, I. S. Marjara, R. A. Dalmo, and O. Evensen. Comparison of vaccine efficacy for different antigen delivery systems for infectious pancreatic necrosis virus vaccines in Atlantic salmon (Salm salar L.) in a cohabitation challenge model. Vaccine, 30: 4007–4016 (2012).
  • Mutlu, G. M., G. R. Budinger, A. A. Green, D. Urich, S. Soberanes, S. E. Chiarella, G. F. Alheid, D. R. McCrimmon, I. Szleifer, and M. C. Hersam. Biocompatible nanoscale dispersion of single-walled carbon nanotubes minimizes in vivo pulmonary toxicity. Nano Lett., 10: 1664–1670 (2010).
  • Mutoloki, S., S. Alexandersen, and O. Evensen. Sequential study of antigen persistence and concomitant inflammatory reactions relative to side-effects and growth of Atlantic salmon (Salmo salar L.) following intraperitoneal injection with oil-adjuvanted vaccines. Fish Shellfish Immunol., 16: 633–644 (2004).
  • Myhr, A. I., and B. K. Myskja. Precaution or integrated responsibility approach to nanovaccines in fish farming? A critical appraisal of the UNESCO precautionary principle. Nanoethics, 5: 73–86 (2011).
  • Najafi-Hajivar, S. Z. M. Parvin, M. Hamed, N. Mehri, S. G. Mehdi, B. Behzad, and V. Hadi. Overview on experimental models of interactions between nanoparticles and the immune system. Biomed. Pharmaco., 83: 1365–1378 (2016).
  • Nassimi, M., C. Schleh, H. D. Lauenstein, R. Hussein, H. G. Hoymann, W. Koch, G. Pohlmann, N. Krug, K. Sewald, S. Rittinghausen, A. Braun, and C. Müller-Goymann. A toxicological evaluation of inhaled solid lipid nanoparticles used as a potential drug delivery system for the lung. Eur. J. Pharma. Biopharma., 75: 107–116 (2010).
  • Oberdorster, G., E. Oberdorster, and J. Oberdorster. Nanotoxicology: An emerging discipline evolving from studies of ultrafine particles. Environ. Health Perspect., 113: 823–839 (2005).
  • O'Hagan, D.T., M. L. MacKichan, and M. Singh. Recent developments in adjuvants for vaccines against infectious diseases. Biomol. Eng., 18: 69–85 (2001).
  • Oyewumi, M. O., A. Kumar, and Z. Cui. Nano-microparticles as immune adjuvants: Correlating article sizes and the resultant immune responses. Exp. Rev.Vac., 9: 1095–1107 (2010).
  • Pankhurst, Q. A., J. Connolly, S. K. Jones, and J. Dobson. Application of magnetic nanoparticles in biomedicine. J. Phys. D: Appl. Phys., 36: 167–181 (2003).
  • Panyam, J., and V. Labhasetwar. Biodegradable nanoparticles for drug and gene delivery to cells and tissue. Adv. Drug Deliv. Rev., 55: 329–347 (2003).
  • Petrovsky, N., and J. C. Aguliar. Vaccine adjuvants: Current state and future trends. Immunol. Cellbiol., 82: 488–496 (2004).
  • Poppe, T. T., and O. Breck. Pathology of Atlantic salmon (Salmo salar) intraperitonially immunized with oil-adjuvanted vaccine. A case report. Dis. Aquat. Org., 29: 219–226 (1997).
  • Pulendran, B., and R. Ahmed. Immunological mechanisms of vaccination. Nature Immunol., 12: 509–517 (2011).
  • Rajesh, S. K., V. P. I. Ahmed, V. Parameswaran, R. Sudhakaran, V. S. Babu, and A. S. S. Hameed. Potential of chitosan nanoparticles for oral delivery of DNA vaccine in Asian sea bass (Lates calcarifer) to protect from vibrio (Listonella) anguillarum. Fish Shellfish Immunol., 25: 47–56 (2008).
  • Rauta, P. R., and B. Nayak. Parenteral immunization of PLA/PLGA nanoparticle encapsulating outer membrane protein (Omp) from Aeromonas hydrophila: evaluation of immunostimulatory action in Labeo rohita (rohu). Fish Shellfish Immunol., 44: 287–294 (2015).
  • Sahdev, P., L. J. Ochyl, and J. J. Moon. Biomaterials for nanoparticle vaccine delivery systems. Pharma. Res., 31: 2563–2582 (2014).
  • Scheinberg, D. A., M. R. McDevitt, and T. Dao. Carbon nanotubes as vaccine scaffolds. Adv. Drug Deliv. Rev., 65: 2016–2022 (2013).
  • Secombes, C. J., and A. E. Ellis. The immunology of teleosts, pp. 144–166. In: Fish Pathology, 4th ed. (R. J. Roberts, Ed.) New York: W.B. John Wiley & Sons (2012).
  • Shaalan, M., M. Saleh, M. El-Mahdy, M. El-Matbouli. Recent progress in application of nanoparticles in fish medicine: A review. Nanomed. Nanotechnol., 12: 701–710 (2016).
  • Sjolander, A., J. C. Cox, and I. G. Barr. ISCOMs: An adjuvant with multiple functions. J. Leuk. Biol., 64: 713–723 (1998).
  • Smith, J. D., L. D. Morton, and B. D. Ulery. Nanoparticles as synthetic vaccines. Curr. Opin. Biotechnol., 34: 217–224 (2015).
  • Sokolova, V. V., I. Radtke, R. Heumann, and M. Epple. Effective transfection of cells with multi-shell calcium phosphate-DNA nanoparticles. Biomaterials, 27: 3147–3153 (2006).
  • Tafalla, C, J. Bøgwald, and R. A. Dalmo. Adjuvants and immunostimulants in fish vaccines: current knowledge and future perspectives. Fish Shellfish Immunol., 35(6): 1740–1750 (2013).
  • Takagi, A., A. Hirose, T. Nishimura, N. Fukumori, A. Ogata, N. Ohashi, S. Kitajima, and J. Kanno. Induction of mesothelioma in p53+/− mouse by intraperitoneal application of multi-wall carbon nanotube. J. Toxicol. Sci., 33: 105–116 (2008).
  • Tian, J., and J., Yu. Poly (lactic-c0-glycolic acid) nanoparticles as candidate DNA vaccine carrier for oral immunization of Japanese flounder (Paralichthys olivaceus) against lymphocystis disease virus. Fish Shellfish Immunol., 30: 109–117 (2011).
  • Tissot, A. C., P. Maurer, J. Nussberger, R. Sabat, T. Pfister, and S. Ignatenko. Effect of immunisation against angiotension II with CYT006-AngQb on ambulatory blood pressure: A double-blind, randomized, placebo-controlled phase IIa study. Lancet, 371: 821–827 (2008).
  • Toita, R., Y. Kanai, H. Watabe, K. Nakao, S. Yamamoto, J. Hatazawa, and M. Akashi. Biodistribution of (125) I-labeled polymeric vaccine carriers after subcutaneous injection. Bioorg. Med. Chem., 21: 5310–5315 (2013).
  • Tort, L., J. C. Balasch, and S. Mackenzie. Fish immune system. A crossroads between innate and adaptive responses. Immunologia, 22: 277–286 (2003).
  • Vimal, S., A. S. Majeed, K. S. N. Nambi, N. Madan, M. A. Farook, C. Venkatesan, G. Taju, S. Venu, R. Subburaju, A. R. Thirunavakkarasu, and A. S. S. Hameed. Delivery of DNA vaccine using chitosan-tripolyphosphate (CS/TPP) nanoparticles in Asian sea bass, Lates calcarifer (Bloch, 1790) for protection against nodavirus infection. Aquaculture, 420: 240–246 (2014).
  • Vimal, S., G. Taju, K. S. N. Nambi, S. A. Majeed, V. S. Babu, M. Ravi, and A. S. S. Hameed. Synthesis and characterization of CS/TPP nanoparticles for oral delivery of gene in fish. Aquaculture, 358: 14–22 (2012).
  • Vinay, T. N., C. S. Park, H. Y. Kim, S. J. Jung. Toxicity and dose determination of quillaja saponin, aluminum hydroxide and squalene in olive flounder (Paralichthys olivaceus). Vet. Immunol. Immunopathol., 158: 73–85 (2014).
  • Wang, Y., G. L. Liu, D. L. Li, F. Ling, B. Zhu, and G. X. Wang. The protective immunity against grass carp reovirus in grass carp induced by a DNA vaccination using single-walled carbon nanotubes as delivery vehicles. Fish Shellfish Immunol., 47: 732–742 (2015).
  • Wee, S., and W. R. Gombotz. Protein release from alginate matrices. Adv. Drug Deliv. Rev., 31: 267–285 (1998).
  • WHO. Guidelines for estimating costs of introducing new vaccines into the national immunization system. Available from www.rho.org/hpv-evaluating-pilots.htm (2002).
  • Xiang, S. D., K. Wilson, S. Day, M. Fuchsberger, M. Plebanski. Methods of effective conjugation of antigens to nanoparticles as non-inflammatory vaccine carriers. Methods, 60: 232–241 (2013).
  • Yasumoto, S., Y. Kuzuya, M. Yasuda, T. Yoshimura, and T. Miyazaki. Oral immunization of common carp with liposome vaccine fusing koi Herpesvirus antigen. Fish Pathol., 41: 141–145 (2006).
  • Yildirimer, L., N. T. Thanh, M. Loizidou, and A. M. Seifalin. Toxicological considerations of clinically applicable nanoparticles. Nanotoday, 6: 585–607 (2011).
  • You, C., C. Han, X. Wang, Y. Zheng, Q. Li, and X. Hu. The process of silver nanoparticles in antimicrobial mechanism, clinical application and cytotoxicity. Mol. Biol. Rep., 39: 9193–9201 (2012).
  • Younes, I., and M. Rinaudo. Chitin and chitosan preparation from marine sources. Structure, properties and applications. Mar. Drugs, 13: 325–334 (2015).
  • Zaman, M., M. F. Good, and I. Toth. Nanovaccines and their mode of action. Methods, 60: 226–231 (2013).
  • Zellner, R. Biological responses to nanoscale particles. Beilstein J. Nanotech., 6: 380–382 (2015).
  • Zhang, L., Z. Zeng, C. Hu, S. L. Bellis, W. Yang, Y. Su, X. Zhang, and Y. Wu. Controlled and targeted release of antigens by intelligent shell for improving applicability of oral vaccines. Biomaterials, 77: 307–319 (2015).
  • Zhao, L., A. Seth, N. Wibowo, C. X. Zhao, N. Mitter, C. Yu, and A. P. J. Middelber. Nanoparticle vaccines. Vaccine, 32: 327–337 (2014).
  • Zheng, F., H. Liu, X. Sun, Y. Zhang, B. Zhang, Z. Teng, Y. Hou, and B. Wang. Development of oral DNA vaccine based on chitosan nanoparticles for the immunization against reddish body iridovirus in turbots (Scophthalmus maximus). Aquaculture, 452: 263–271 (2016).
  • Zhu, B., G. L. Liu, Y. X. Gong, F. Ling, L. S. Song, and G. X. Wang. Single walled carbon nanotubes as candidate recombinant subunit vaccine carrier for immunization of grass carp against grass carp reovirus. Fish Shellfish Immunol., 41: 279–293 (2014).
  • Zhu, B., G. L. Liu, Y. X. Gong, F. Ling, and G. X. Wang. Protective immunity of grass carp immunized with DNA vaccine encoding vp7 gene of grass carp reovirus using carbon nanotubes as carrier molecule. Fish Shellfish Immunol., 42: 325–334 (2015).
  • Zolnik, B. S., A. G. Fernandez, N. Sadrieh, and M. A. Dobrovolskaia. Nanoparticles and immune systems. Endocrinology, 151: 458–465 (2010).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.