334
Views
0
CrossRef citations to date
0
Altmetric
REVIEW

Considerations for Water Temperature-Related Fishery Closures in Recreational Atlantic Salmon (Salmo salar) Catch and Release Fisheries: A Case Study from Eastern Canada

ORCID Icon, , , , , , , , , & show all

References

  • Alós J, Palmer M, Trías P, Díaz-Gil C, Arlinghaus R. 2015. Recreational angling intensity correlates with alteration of vulnerability to fishing in a carnivorous coastal fish species. Can J Fish Aquat Sci. 72(2):217–225. doi:10.1139/cjfas-2014-0183.
  • Anderson WG, Booth R, Beddow TA, McKinley RS, Finstad B, Økland F, Scruton D. 1998. Remote monitoring of heart rate as a measure of recovery in angled Atlantic Salmon, Salmo salar (L.). Hydrobiologia 371:233–240. doi:10.1023/A:1017064014274.
  • Anttila K, Dhillon RS, Boulding EG, Farrell AP, Glebe BG, Elliott JA, Wolters WR, Schulte PM. 2013. Variation in temperature tolerance among families of Atlantic salmon (Salmo salar) is associated with hypoxia tolerance, ventricle size and myoglobin level. J Exp Biol. 216(Pt 7):1183–1190. doi:10.1242/jeb.080556.
  • Anttila K, Couturier CS, Øverli Ø, Johnsen A, Marthinsen G, Nilsson GE, Farrell AP. 2014. Atlantic salmon show capability for cardiac acclimation to warm temperatures. Nat Commun. 5:4252. doi:10.1038/ncomms5252.
  • Bartlett CB, Garber AF, Gonen S, Benfey TJ. 2022. Acute critical thermal maximum does not predict chronic incremental thermal maximum in Atlantic salmon (Salmo salar). Comp Biochem Physiol A Mol Integr Physiol. 266:111143. doi:10.1016/j.cbpa.2022.111143.
  • Bates AE, Primack RB, Biggar BS, Bird TJ, Clinton ME, Command RJ, Richards C, Shellard M, Geraldi NR, Vergara V, et al. 2021. Global COVID-19 lockdown highlights humans as both threats and custodians of the environment. Biol Conserv. 263:109175. doi:10.1016/j.biocon.2021.109175.
  • Becker CD, Genoway RG. 1979. Evaluation of the critical thermal maximum for determining thermal tolerance of freshwater fish. Environ Biol Fish. 4(3):245–256. doi:10.1007/BF00005481.
  • Blyth S, Rönnbäck P. 2022. To eat or not to eat, coastal sea trout anglers’ motivations and perceptions of best practices for catch and release. Fish Res. 254:106412. doi:10.1016/j.fishres.2022.106412.
  • Booth RK, Kieffer JD, Davidson K, Bielak AT, Tuft BL. 1995. Effects of late season catch and release angling on anaerobic metabolism, acid-base status, survival and gamete viability in wild Atlantic Salmon (Salmo salar). Can J Fish Aquat Sci. 52(2):283–290. doi:10.1139/f95-029.
  • Bouchard R, Wellband K, Lecomte L, Bernatchez L, April J. 2022. Effect of catch-and-release and temperature at release on reproductive success of Atlantic salmon (Salmo salar L.) in the Rimouski River, Québec, Canada. Fisheries Management Eco. 29(6):888–896. doi:10.1111/fme.12590.
  • Bowden AJ, Andrewartha SJ, Elliott NG, Frappell PB, Clark TD. 2018. Negligible differences in metabolism and thermal tolerance between diploid and triploid Atlantic salmon (Salmo salar). J Exp Biol. 221(5):166975. doi:10.1242/jeb.166975.
  • Brobbel MA, Wilkie MP, Davidson K, Kieffer JD, Bielak AT, Tufts BL. 1996. Physiological effects of catch and release angling in Atlantic Salmon (Salmo salar) at different stages of freshwater migration. Can J Fish Aquat Sci. 53(9):2036–2043. doi:10.1139/f96-143.
  • Breau C, Cunjak R, Bremset G. 2007. Age‐specific aggregation of wild juvenile Atlantic salmon Salmo salar at cool water sources during high temperature events. J Fish Biol. 71(4):1179–1191. doi:10.1111/j.1095-8649.2007.01591.x.
  • Breau C, Cunjak RA, Peake SJ. 2011. Behaviour during elevated water temperatures: can physiology explain movement of juvenile Atlantic salmon to cool water? J Anim Ecol. 80(4):844–853. doi:10.1111/j.1365-2656.2011.01828.x.
  • Breau C. 2013. Knowledge of fish physiology used to set water temperature thresholds for in season closures of Atlantic Salmon (Salmo salar) recreational fisheries. DFO Can Sci Advis Sec Res Doc 2012:163.
  • Brown C, Laland KN. 2003. Social learning in fishes: a review. Fish Fisheries. 4(3):280–288. doi:10.1046/j.1467-2979.2003.00122.x.
  • Brown G, Krygier JT. 1970. Effects of clear-cutting on stream temperature. Water Resour Res. 6(4):1133–1139. doi:10.1029/WR006i004p01133.
  • Brown LE, Hannah DM, Milner AM. 2005. Spatial and temporal water column and streambed temperature dynamics within an alpine catchment: implications for benthic communities. Hydrol Process. 19(8):1585–1610. doi:10.1002/hyp.5590.
  • Brownscombe JW, Danylchuk AJ, Chapman JM, Gutowsky LFG, Cooke SJ. 2017. Best practices for catch-and-release recreational fisheries angling tools and tactics. Fish Res. 186(Part 3):693–705. doi:10.1016/j.fishres.2016.04.018.
  • Caissie D, Breau C, Hayward J, Cameron P. 2012. Water temperature characteristics of the Miramichi and Restigouche Rivers. DFO Can Sci Advis Sec Res Doc 2012:165.
  • Chen Z, Narum SZ. 2021. Whole genome resequencing reveals genomic regions associated with thermal adaptation in redband trout. Mol Ecol. 30(1):162–174. doi:10.1111/mec.15717.
  • Connelly NA, Brown TL, Knuth BA. 2000. Assessing the relative importance of recall bias and nonresponse bias and adjusting for those biases in statewide angler surveys. Hum Dimens Wildl. 5(4):19–29. doi:10.1080/10871200009359192.
  • Cooke SJ, Suski CD. 2005. Do we need species-specific guidelines for catch-and-release recreational angling to effectively conserve diverse fishery resources? Biodivers Conserv. 14(5):1195–1209. doi:10.1007/s10531-004-7845-0.
  • Corey E, Linnansaari T, Cunjak RA, Currie S. 2017. Physiological effects of environmentally relevant, multi-day thermal stress on wild juvenile Atlantic salmon (Salmo salar). Conserv Physiol. 5(1):cox014. doi:10.1093/conphys/cox014.
  • Corey E, Linnansaari T, Dugdale SJ, Bergeron N, Gendron JF, Lapointe M, Cunjak RA. 2020. Comparing the behavioural thermoregulation response to heat stress by Atlantic salmon parr (Salmo salar) in two rivers. Ecol Freshw Fish. 29(1):50–62. doi:10.1111/eff.12487.
  • Cote D. 2005. Using stewardship, long term monitoring and adaptive management to restore the Atlantic salmon population of the Northwest River. Tech Rep Eco Sci. 43:1–41.
  • Cote D, Van Leeuwen TE, Bath AJ, Gonzales EK, Cote AL. 2021. Social–ecological management results in sustained recovery of an imperiled salmon population. Restor Ecol. 29(5):1–7. doi:10.1111/rec.13401.
  • Davidson K, Hayward J, Hambrook M, Bielak AT, Sheasgreen J. 1994. The effects of late season angling on gamete viability and early fry survival in Atlantic Salmon. Can Tech Rep Fish Aquat Sci. 1982:1–12.
  • Debes PV, Solberg MF, Matre IH, Dyrhovden L, Glover KA. 2021. Genetic variation for upper thermal tolerance diminishes within and between populations with increasing acclimation temperature in Atlantic salmon. Heredity (Edinb).127(5):455–466. doi:10.1038/s41437-021-00469-y.
  • Dempson JB, O'Connell MF, Cochrane NM. 2001. Potential impact of climate warming on recreational fishing opportunities for Atlantic Salmon, Salmo salar L., in Newfoundland, Canada. Fisheries Manag Ecol. 8(1):69–82. doi:10.1046/j.1365-2400.2001.00225.x.
  • Dempson JB, Furey G, Bloom M. 2002. Effects of catch and release angling on Atlantic Salmon, Salmo salar L., of the Conne River, Newfoundland. Fisheries Manag Ecol. 9(3):139–147. doi:10.1046/j.1365-2400.2002.00288.x.
  • DFO. 2009. A fishery decision-making framework incorporating the precautionary approach (Date modified: 2009-03-23).
  • DFO. 2012. Temperature threshold to define management strategies for Atlantic Salmon (Salmo salar) fisheries under environmentally stressful conditions. DFO Can Sci Advis Sec Sci Advis Rep. 2012:019.
  • DFO. 2019. Guidance for the development of rebuilding plans under the Precautionary Approach Framework: Growing stocks out of the critical zone.
  • DFO. 2022. Stock assessment of Newfoundland and Labrador Atlantic Salmon in 2020. DFO Can Sci Advis Sec Sci Advis Rep. 2022:031.
  • Dugdale SJ, Malcolm IA, Kantola K, Hannah DM. 2018. Stream temperature under contrasting riparian forest cover: understanding thermal dynamics and heat exchange processes. Sci Total Environ. 610-611:1375–1389. doi:10.1016/j.scitotenv.2017.08.198.
  • Dunfield RW. 1985. The Atlantic salmon in the history of North America. Can Spe Pub Fish Aquat Sci. 80:181.
  • Elliott J. 1991. Tolerance and resistance to thermal stress in juvenile Atlantic salmon, Salmo salar. Freshwater Biol. 25(1):61–70. doi:10.1111/j.1365-2427.1991.tb00473.x.
  • Evans EC, Petts GE. 1997. Hyporheic temperature patterns in riffles. Hydrol Sci J. 42(2):199–213. doi:10.1080/02626669709492020.
  • Frechette DM, Dugdale SJ, Dodson JJ, Bergeron NE. 2018. Understanding summertime thermal refuge use by adult Atlantic salmon using remote sensing, river temperature monitoring, and acoustic telemetry. Can J Fish Aquat Sci. 75(11):1999–2010. doi:10.1139/cjfas-2017-0422.
  • Gale MK, Hinch SG, Donaldson MR. 2013. The role of temperature in the capture and release of fish. Fish Fish. 14(1):1–33. doi:10.1111/j.1467-2979.2011.00441.x.
  • Gallant MJ, LeBlanc S, MacCormack TJ, Currie S. 2017. Physiological responses to a short-term, environmentally realistic, acute heat stress in Atlantic salmon, Salmo salar. Facets 2(1):330–341. doi:10.1139/facets-2016-0053.
  • Gargan PG, Stafford T, Okland F, Thorstad EB. 2015. Survival of wild Atlantic salmon (Salmo salar) after catch and release angling in three Irish rivers. Fish Res. 161:252–260. doi:10.1016/j.fishres.2014.08.005.
  • Gu R, Montgomery S, Austin T. 1998. Quantifying the effects of stream discharge of summer river temperature. Hydrol Sci J. 43(6):885–904. doi:10.1080/02626669809492185.
  • Haggerty R, Wondzell SM, Johnson MA. 2002. Power-law residence time distribution in the hyporheic zone of a 2nd-order mountain stream. Geophys Res Lett. 29(13):18-1–18-4. doi:10.1029/2002GL014743.
  • Hamblin P, McAdam S. 2003. Impoundment effects on the thermal regimes of Kootenay Lake, the Arrow Lakes Reservoir and Upper Columbia River. Hydrobiologia 504(1-3):3–19. doi:10.1023/B:HYDR.0000008503.75784.ee.
  • Hines CW, Fang Y, Chan VK, Stiller KT, Brauner CJ, Richards JG. 2019. The effect of salinity and photoperiod on thermal tolerance of Atlantic and coho salmon reared from smolt to adult in recirculating aquaculture systems. Comp Biochem Physiol A Mol Integr Physiol. 230:1–6. doi:10.1016/j.cbpa.2018.12.008.
  • Hockey JB, Owens IF, Tapper NJ. 1982. Empirical and theoretical models to isolate the effect of discharge on summer water temperatures in the Hurunui River. J Hydrol: NZ 21(1):1–12. www.jstor.org/stable/43944497.
  • Huntsman AG. 1942. Death of salmon and trout with high temperature. J Fish Res Bd Can. 5c(5):485–501. doi:10.1139/f40-051.
  • Hutchings JA, Ardren WR, Barlaup BT, Bergman E, Clarke KD, Greenberg LA, Lake C, Piironen J, Sirois P, Sundt-Hansen LE, et al. 2019. Life-history variability and conservation status of landlocked Atlantic Salmon: an overview. Can J Fish Aquat Sci. 76(10):1697–1708. doi:10.1139/cjfas-2018-0413.
  • ICES 2019. Working group on North Atlantic Salmon (WGNAS). ICES Sci Rep. 1:368.
  • Jackson FL, Fryer RJ, Hannah DM, Millar CP, Malcolm IA. 2018. A spatio-temporal statistical model of maximum river temperatures to inform the management of Scotland’s Atlantic salmon rivers under climate change. Sci Total Environ. 612:1543–1558. doi:10.1016/j.scitotenv.2017.09.010.
  • Jeffery NW, Stanley RRE, Wringe BF, Guijarro-Sabaniel J, Bourret V, Bernatchez L, Bentzen P, Beiko RG, Gilbey J, Clément M, et al. 2017. Range-wide parallel climate-associated genomic clines in Atlantic salmon. R Soc Open Sci. 4(11):171394. doi:10.1098/rsos.171394.
  • Johnson SL. 2004. Factors influencing stream temperatures in small streams: substrate effects and a shading experiment. Can J Fish Aquat Sci. 61(6):913–923. doi:10.1139/f04-040.
  • Jonsson B, Jonsson N. 2009. A review of the likely effects of climate change on anadromous Atlantic salmon Salmo salar and brown trout Salmo trutta, with particular reference to water temperature and flow. J Fish Biol. 75(10):2381–2447. doi:10.1111/j.1095-8649.2009.02380.x.
  • Johnston FD, Simmons S, van Poorten B, Venturelli P. 2022. Comparative analyses with conventional surveys reveal the potential for an angler app to contribute to recreational fisheries monitoring. Can J Fish Aquat Sci. 79(1):31–46. doi:10.1139/cjfas-2021-0026.
  • Kasahara T, Wondzell SM. 2003. Geomorphic controls on hyporheic exchange flow in mountain streams. Water Resour Res. 39(1):SBH 3-1–SBH 3-14. doi:10.1029/2002WR001386.
  • Keefe D, Young M, Van Leeuwen TE, Adams B. 2022. Long-term survival of Atlantic salmon following catch and release: considerations for anglers, scientists and resource managers. Fisheries Management Eco. 29(3):286–297. doi:10.1111/fme.12533.
  • Lennox RJ, Uglem I, Cooke SJ, Næsje TF, Whoriskey FG, Havn TB, Ulvan EU, Solem Ø, Thorstad EB. 2015. Does catch-and-release angling alter the behaviour and fate of adult Atlantic Salmon during upriver migration? Trans Am Fish Soc. 144(2):400–409. doi:10.1080/00028487.2014.1001041.
  • Lennox RJ, Cooke SJ, Diserud OH, Havn TB, Johansen MR, Thorstad EB, Whoriskey FG, Uglem I. 2016. Use of simulation approaches to evaluate the consequences of catch and release angling on the migration behaviour of adult Atlantic Salmon (Salmo salar). Ecol Model. 333:43–50. doi:10.1016/j.ecolmodel.2016.04.010.
  • Lennox RJ, Cooke SJ, Davis CR, Gargan P, Hawkins LA, Havn TB, Johansen MR, Kennedy RJ, Richard A, Svenning M, et al. 2017. Pan-Holarctic assessment of post-release mortality of angled Atlantic Salmon Salmo salar. Biol Conserv. 209:150–158. doi:10.1016/j.biocon.2017.01.022.
  • MacCrimmon HR, Gots BL. 1979. World distribution of Atlantic Salmon, Salmo salar. J Fish Res Bd Can. 36(4):422–457. doi:10.1139/f79-062.
  • Malcolm IA, Soulsby C, Hannah DM, Bacon PJ, Youngson AF, Tetzlaff D. 2008. The influence of riparian woodland on stream temperatures: implications for the performance of juvenile salmonids. Hydrol Process. 22(7):968–979. doi:10.1002/hyp.6996.
  • Mellina ER, Moore D, Hinch SG, Macdonald JS, Pearson G. 2002. Stream temperature responses to clearcut logging in British Columbia: the moderating influences of groundwater and headwater lakes. Can J Fish Aquat Sci. 59(12):1886–1900. doi:10.1139/f02-158.
  • Meyer KA, McCormick JL, Kozfkay JR, Dillon JC. 2023. Effects of elevated water temperature on cutthroat trout angler catch rates and catch-and-release mortality in Idaho streams. Fisheries Management Eco. 30(2):134–141. doi:10.1111/fme.12605.
  • Mowbray F, Locke A. 1999. The effect of water temperature on angling catch of Atlantic Salmon in the Upsalquitch River. DFO Can Sci Advis Sec Res Advis Rep. 99(56):17.
  • Muoneke MI, Childress WM. 1994. Hooking mortality: a review for recreational fisheries. Rev Fish Sci. 2(2):123–156. doi:10.1080/10641269409388555.
  • O’Connell MF, Cochrane NM, Mullins CC. 1998. An analysis of the licence stub return system in the Newfoundland Region, 1994-1997. Can Stock Asses Sec Res Doc. 98:111.
  • O'Sullivan A, Corey E, Cunjak R, Linnansaari T, Curry R. 2021. Salmonid thermal habitat contraction in a hydrogeologically complex setting. Ecosphere 12(10):e03797. doi:10.1002/ecs2.3797.
  • O'Sullivan AM, Devito KJ, D'Orangeville L, Curry RA. 2022a. The waterscape continuum concept: rethinking boundaries in ecosystems. Wiley Interdiscip Rev Water. 9(4):e1598. doi:10.1002/wat2.1598.
  • O'Sullivan AM, Linnansaari T, Le Avitt J, Samways KM, Kurylyk BL, Curry RA. 2022b. The salmon‐peloton: Hydraulic habitat shifts of adult Atlantic salmon (Salmo salar) due to behavioural thermoregulation. River Res Apps. 38(1):107–118. doi:10.1002/rra.3872.
  • O'Sullivan AM, Corey E, Collet EN, Helminen J, Curry RA, Macintyre C, Linnansaari T. 2023. Timing and frequency of high temperature events bend the onset of behvioural thermoregualtion in Atlantic salmon (Salmo salar). Conserv Physiol. 11(1):coac079. doi:10.1093/conphys/coac079.
  • Papatheodoulou M, Závorka L, Koeck B, Metcalfe NB, Killen SS. 2022. Simulated pre-spawning catch & release of wild Atlantic salmon (Salmo salar) results in faster fungal spread and opposing effects on female and male proxies of fecundity. Can J Fish Aquat Sci. 79(2):267–276. doi:10.1139/cjfas-2021-0089.
  • Peterman RM, Steer GJ. 1981. Relation between sport-fishing catchability coefficients and salmon abundance. Trans Am Fish Soc. 110(5):585–593. doi:10.1577/1548-8659(1981)110 < 585:RBSCCA>2.0.CO;2.
  • Pinfold G. 2011. Economic value of wild Atlantic salmon. Halifax: Atlantic Salmon Federation.
  • Poole G, Berman C. 2001. An ecological perspective on in-stream temperature: Natural heat dynamics and mechanisms of human-caused thermal degradation. Environ Manage. 27(6):787–802. doi:10.1007/s002670010188.
  • Reed TE, de Eyto E, O’Higgins K, Gargan P, Roche W, White J, O’Maoileidigh N, Quinn TP, McGinnity P. 2017. Availability of holding habitat in lakes and rivers affects the incidence of spring (premature) upriver migration by Atlantic Salmon. Can J Fish Aquat Sci. 74(5):668–679. doi:10.1139/cjfas-2016-0191.
  • Richard A, Bernatchez L, Valiquette E, Dionne M. 2014. Telemetry reveals how catch and release affects prespawning migration in Atlantic Salmon (Salmo salar). Can J Fish Aquat Sci. 71(11):1730–1739. doi:10.1139/cjfas-2014-0072.
  • Ringler NH, Hall JD. 1975. Effects of logging on water temperature, and dissolved oxygen in spawning beds. Trans Am Fish Soc. 104(1):111–121. doi:10.1577/1548-8659(1975)104 < 111:EOLOWT>2.0.CO;2.
  • Shardlow TF. 1993. Components analysis of a density-dependent catchability coefficient in a salmon hook and line fishery. Can J Fish Aquat Sci. 50(3):513–520. doi:10.1139/f93-060.
  • Sinokrot BA, Stefan HG. 1993. Stream temperature dynamics: Measurements and modeling. Water Resour Res. 29(7):2299–2312. doi:10.1029/93WR00540.
  • Skov C, Hyder K, Gundelund C, Ahvonen A, Baudrier J, Borch T, deCarvalho S, Erzini K, Ferter K, Grati F, et al. 2021. Expert opinion on using angler Smartphone apps to inform marine fisheries management: status, prospects, and needs. ICES J Mar Sci. 78(3):967–978. doi:10.1093/icesjms/fsaa243.
  • Thorstad EB, Næsje TF, Leinan I. 2007. Long-term effects of catch-and-release angling on Atlantic Salmon during different stages of return migration. Fish Res. 85(3):330–334. doi:10.1016/j.fishres.2007.02.010.
  • Thorstad EB, Bliss D, Breau C, Damon‐Randall K, Sundt‐Hansen LE, Hatfield EMC, Horsburgh G, Hansen H, Maoiléidigh NÓ, Sheehan T, et al. 2021. Atlantic salmon in a rapidly changing environment—facing the challenges of reduced marine survival and climate change. Aquatic Conserv. 31(9):2654–2665. doi:10.1002/aqc.3624.
  • Van Leeuwen TE, Dempson JB, Burke CM, Kelly NI, Robertson MJ, Lennox RJ, Havn TB, Svenning M, Hinks R, Guzzo MM, et al. 2020a. Mortality of Atlantic salmon after catch and release angling: assessment of a recreational Atlantic salmon fishery in a changing climate. Can J Fish Aquat Sci. 77(9):1518–1528. doi:10.1139/cjfas-2019-0400.
  • Van Leeuwen TE, Dempson JB, Burke CM, Kelly NI, Robertson MJ, Lennox RJ, Havn TB. 2020b. Temperature-induced mortality assessment of catch and release angling on Atlantic Salmon (Salmo salar L.). DFO Can Sci Advis Sec Res Doc. 2020:029.
  • Van Leeuwen TE, Dempson JB, Cote D, Kelly NI, Bates AE. 2021. Catchability of Atlantic salmon at high water temperatures: Implications for river closure temperature thresholds to catch and release angling. Fish Manag Ecol. 28(2):147–157. doi:10.1111/fme.12464.
  • Veinott G, Pike L, Variyath M. 2018. Response of anglers to less-restrictive harvest controls in a recreational Atlantic salmon fishery. North Am J Fish Manage. 38(1):210–222. doi:10.1002/nafm.10011.
  • Webb BW, Walling DE. 1997. Complex summer water temperature behaviour below a UK regulating reservoir. Regul Rivers: Res Mgmt. 13(5):463–477. doi:10.1002/(SICI)1099-1646(199709/10)13:5 < 463::AID-RRR470 > 3.0.CO;2-1.
  • Wei T, Simko V. 2021. R package ‘corrplot’: Visualization of a Correlation Matrix. (Version 0.92). https://github.com/taiyun/corrplot.
  • Wickham H. 2009. ggplot2: elegant graphics for data analysis. New York: Springer; p. 65–90.
  • Wilkie MP, Davidson K, Brobbel MA, Kieffer JD, Booth RK, Bielak AT, Tufts BL. 1996. Physiology and survival of wild Atlantic Salmon following angling in warm summer months. Trans Am Fish Soc. 125(4):572–580. doi:10.1577/1548-8659(1996)125 < 0572:PASOWA>2.3.CO;2.
  • Wood CM, Turner JD, Graham MS. 1983. Why do fish die after severe exercise? J Fish Biology.Biology 22(2):189–201. doi:10.1111/j.1095-8649.1983.tb04739.x.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.