900
Views
5
CrossRef citations to date
0
Altmetric
Research Article

Sharp bounds for the Neuman-Sándor mean in terms of the power and contraharmonic means

& ORCID Icon | (Reviewing Editor)
Article: 995951 | Received 04 Jul 2014, Accepted 04 Dec 2014, Published online: 09 Jan 2015

References

  • Anderson, G. D., Vamanamurthy, M. K., & Vuorinen, M. (1997). Conformal invariants, inequalities, and quasiconformal maps. New York, NY: John Wiley & Sons.
  • Chu, Y. M., & Hou, S. W. (2012). Sharp bounds for Seiffert mean in terms of contraharmonic mean. Abstract and Applied Analysis, 2012, 6 p. Article ID 425175. doi:10.1155/2012/425175
  • Chu, Y. M., Hou, S. W., & Shen, Z. H. (2012). Sharp bounds for Seiffert mean in terms of root mean square. Journal of Inequalities and Applications, 2012, 11. 6 p. doi:10.1186/1029-242X-2012-11
  • Chu, Y. M., Wang, M. K., & Gong, W. M. (2011). Two sharp double inequalities for Seiffert mean. Journal of Inequalities and Applications, 2011, 44. 7 p. doi:10.1186/1029-242X-2011-44
  • Jiang, W.D., & Qi, F. (2012). Some sharp inequalities involving Seiffert and other means and their concise proofs. Mathematical Inequalities and Applications, 15, 1007–1017. doi:10.7153/mia-15-86
  • Jiang, W. D., & Qi, F. Sharp bounds for Neuman–Sándor’s mean in terms of the root-mean-square. Retrieved from http://arxiv.org/abs/1301.3267
  • Jiang, W. D., & Qi, F. (in press). Sharp bounds for Neuman–Sándor’s mean in terms of the root-mean-square. Periodica Mathematica Hungarica, 69, 134–138. Retrieved from http://dx.doi.org/10.1007/s10998-014-0057-9.
  • Jiang, W. D., & Qi, F. Sharp bounds in terms of the power of the contra-harmonic mean for Neuman–Sándor mean. Retrieved from http://arxiv.org/abs/1301.3554
  • Li, Y. M., Long, B. Y., & Chu, Y. M. (2012). Sharp bounds for the Neuman–Sándor mean in terms of generalized logarithmic mean. Journal of Mathematical Inequalities, 6, 567–577. doi:10.7153/jmi-06-54
  • Li, W. H., & Qi, F. A unified proof of inequalities and some new inequalities involving Neuman–Sándor mean. Retrieved from http://arxiv.org/abs/1312.3500
  • Li, W.H., & Zheng, M.M. (2013). Some inequalities for bounding Toader mean. Journal of Function Spaces and Applications, 2013, 5 p. Article ID 394194. doi:10.1155/2013/394194
  • Neuman, E. (2011). Inequalities for the Schwab—Borchardt mean and their applications. Journal of Mathematical Inequalities, 5, 601–609. doi:10.7153/jmi-05-52
  • Neuman, E. (2012). A note on a certain bivariate mean. Journal of Mathematical Inequalities, 6, 637–643. doi:10.7153/jmi-06-62
  • Neuman, E., & Sándor, J. (2003). On the Schwab—Borchardt mean. Mathematica Pannonica, 14, 253–266.
  • Neuman, E., & Sándor, J. (2006). On the Schwab—Borchardt mean II. Mathematica Pannonica, 17, 49–59.
  • Seiffert, H.-J. (1995). Aufgabe β 16. Die Wurzel, 29, 221–222.