505
Views
11
CrossRef citations to date
0
Altmetric
Research Article

An investigation of abundant traveling wave solutions of complex nonlinear evolution equations: The perturbed nonlinear Schrodinger equation and the cubic-quintic Ginzburg-Landau equation

, & | (Reviewing Editor)
Article: 1277506 | Received 09 Nov 2016, Accepted 23 Dec 2016, Published online: 16 Jan 2017

References

  • Akbar, M. A., & Ali, N. H. M. (2011). Exp-function method for Duffing equation and new solutions of (2+1)-dimensional dispersive long wave equations. Program in Applied Mathematics, 1, 30–42.
  • Akbar, M. A., & Ali, N. H. M. (2016). An ansatz for solving nonlinear partial differential equations in mathematical physics. SpringerPlus, 5, 30. doi:10.1186/s40064-015-1652-9
  • Akbar, M. A., Ali, N. H. M., & Zayed, E. M. E. (2012a). Abundant exact traveling wave solutions of generalized bretherton equation via improved (G′/G)-expansion method. Communications in Theoretical Physics, 57, 173–178.10.1088/0253-6102/57/2/01
  • Akbar, M. A., Ali, N. H. M., & Zayed, E. M. E. (2012b). A generalized and improved (G′/G)-expansion method for nonlinear evolution equations. Mathematical Problems in Engineering, 2012, 22 p. doi:10.1155/2012b/459879
  • Dai, C., & Zhang, J. (2006). Exact solutions of discrete complex cubic-quintic Ginzburg Landau equation with non-local quintic term. Optics Communications, 263, 309–316.10.1016/j.optcom.2006.01.033
  • Demiray, S., Ünsal, Ö., & Bekir, A. (2015). Exact solutions of nonlinear wave equations using (G′/G,1/G)-expansion method. Journal of the Egyptian Mathematical Society, 23, 78–84.10.1016/j.joems.2014.02.011
  • Fan, E. G. (2000). Extended tanh-function method and its applications to nonlinear equations. Physics Letters A, 277, 212–218.10.1016/S0375-9601(00)00725-8
  • Fu, Z. T., Liu, S. K., & Shi-Da, L. (2003). A new approach to solve nonlinear wave equations. Communications in Theoretical Physics, 39, 27–30.
  • Guo, Y., & Lai, S. (2010). New exact solutions for an (N+1)-dimensional generalized Boussinesq equation. Nonlinear Analysis: Theory, Methods & Applications, 72, 2863–2873.10.1016/j.na.2009.11.030
  • Guo, Y., & Wang, Y. (2011). On Weierstrass elliptic function solutions for a (N+1)-dimensional potential KdV equation. Applied Mathematics and Computation, 217, 8080–8092.
  • He, J. H., & Wu, X. H. (2006). Exp-function method for nonlinear wave equations. Chaos, Solitons & Fractals, 30, 700–708.10.1016/j.chaos.2006.03.020
  • Jawad, A. J. M., Petkovic, M. D., & Biswas, A. (2010). Modified simple equation method for nonlinear evolution equations. Applied Mathematics and Computation, 217, 869–877.
  • Khan, K., & Akbar, M. A. (2013). Exact and solitary wave solutions for the Tzitzeica-Dodd-Bullough and the modified KdV-Zakharov-Kuznetsov equations using the modified simple equation method. Ain Shams Engineering Journal, 4, 903–909.10.1016/j.asej.2013.01.010
  • Kudryashov, N. A. (1990). Exact solutions of the generalized Kuramoto-Sivashinsky equation. Physics Letters A, 147, 287–291.10.1016/0375-9601(90)90449-X
  • Li, L., Li, E., & Wang, M. (2010). The (G′/G, 1/G)-expansion method and its application to travelling wave solutions of the Zakharov equations. Applied Mathematics-A Journal of Chinese Universities, 25, 454–462.10.1007/s11766-010-2128-x
  • Li, X. Z., & Wang, M. L. (2007). A sub-ODE method for finding exact solutions of a generalized KdV-mKdV equation with high order nonlinear terms. Physics Letters A, 361, 115–118.10.1016/j.physleta.2006.09.022
  • Liu, S. K., Fu, Z. T., Liu, S., & Zhao, Q. (2001). Jacobi elliptic function expansion method and periodic wave solutions of nonlinear wave equations. Physics Letters A, 289, 69–74.10.1016/S0375-9601(01)00580-1
  • Parkes, E. J., & Duffy, B. R. (1996). An automated tanh-function method for finding solitary wave solutions to non-linear evolution equations. Computer Physics Communications, 98, 288–300.10.1016/0010-4655(96)00104-X
  • Shehata, A. R. (2010). The traveling wave solutions of the perturbed nonlinear Schrodinger equation and the cubic-quintic Ginzburg Landau equation using the modified (G′/G)-expansion method. Applied Mathematics and Computation, 217, 1–10.
  • Shi, Y., Dai, Z., & Li, D. (2009). Application of Exp-function method for 2D cubic-quintic-Ginzburg-Landau equation. Applied Mathematics and Computation, 210, 269–275.
  • Wang, M. L. (1995). Solitary wave solutions for variant Boussinesq equations. Physics Letters A, 199, 169–172.10.1016/0375-9601(95)00092-H
  • Wang, M. L. (1996). Exact solutions for a compound KdV-Burgers equation. Physics Letters A, 213, 279–287.10.1016/0375-9601(96)00103-X
  • Wang, M. L., & Li, X. Z. (2005a). Extended F-expansion method and periodic wave solutions for the generalized Zakharov equations. Physics Letters A, 343, 48–54.10.1016/j.physleta.2005.05.085
  • Wang, M. L., & Li, X. Z. (2005b). Applications of F-expansion to periodic wave solutions for a new Hamiltonian amplitude equation. Chaos, Solitons & Fractals, 24, 1257–1268.10.1016/j.chaos.2004.09.044
  • Wang, M. L., & Zhou, Y. B. (2003). The periodic wave solutions for the Klein–Gordon–Schrödinger equations. Physics Letters A, 318, 84–92.10.1016/j.physleta.2003.07.026
  • Wang, M. L., Zhou, Y. B., & Li, Z. B. (1996). Application of a homogeneous balance method to exact solutions of nonlinear equations in mathematical physics. Physics Letters A, 216, 67–75.10.1016/0375-9601(96)00283-6
  • Wang, M. L., Li, X. Z., & Zhang, J. L. (2007a). Various exact solutions of nonlinear Schrödinger equation with two nonlinear terms. Chaos, Solitons & Fractals, 31, 594–601.10.1016/j.chaos.2005.10.009
  • Wang, M. L., Li, X. Z., & Zhang, J. L. (2007b). Sub-ODE method and solitary wave solutions for higher order nonlinear Schrödinger equation. Physics Letters A, 363, 96–101.10.1016/j.physleta.2006.10.077
  • Wang, M. L., Li, X. Z., & Zhang, J. L. (2008). The (G′/G)-expansion method and travelling wave solutions of nonlinear evolution equations in mathematical physics. Physics Letters A, 372, 417–423.10.1016/j.physleta.2007.07.051
  • Yan, Z. Y. (2001). New explicit travelling wave solutions for two new integrable coupled nonlinear evolution equations. Physics Letters A, 292, 100–106.10.1016/S0375-9601(01)00772-1
  • Yan, Z. Y. (2003). Abundant families of Jacobi elliptic function solutions of the (2+1)-dimensional integrable Davey–Stewartson-type equation via a new method. Chaos, Solitons & Fractals, 18, 299–309.10.1016/S0960-0779(02)00653-7
  • Zang, Z., Li, Y. X., Liu, Z., & Miao, X. J. (2010). New exact solutions to the perturbation nonlinear Schrodinger equation with Kerr law nonlinearity via modified trigonometric function series method. Communications in Nonlinear Science and Numerical Simulation, 16, 3097–3106.
  • Zayed, E. M. E. (2011). The (G′/G)-expansion method combined with the Riccati equation for finding exact solutions of nonlinear PDEs. Journal of Applied Mathematics & Informatics, 29, 351–367.
  • Zayed, E. M. E., & Abdelaziz, M. A. M. (2012). The two variables (G′/G, 1/G)-expansion method for solving the nonlinear KdV-mKdV equation. Math. Probl. Eng., 2012, 14p. Article Id. 725061.
  • Zayed, E. M. E., Hoda Ibrahim, S. A., & Abdelaziz, M. A. M. (2012). Traveling wave solutions of the nonlinear (3+1)-dimensional Kadomtsev- Petviashvili equation using the two variable (G′/G, 1/G)-expansion method. Journal of Applied Mathematics, 2012, 8p. Article Id. 560531.
  • Zhang, Z. (2008). New exact solutions to be generalized nonlinear Schrodinger equation. Fizika A, 17, 125–134.
  • Zhang, J., Jiang, F., & Zhao, X. (2010). An improved (G′/G)-expansion method for solving nonlinear evolution equations. International Journal of Computer Mathematics, 87, 1716–1725.10.1080/00207160802450166
  • Zhang, J. L., Wang, M. L., & Li, X. Z. (2006). The subsidiary ordinary differential equations and the exact solutions of the higher order dispersive nonlinear Schrödinger equation. Physics Letters A, 357, 188–195.10.1016/j.physleta.2006.03.081
  • Zhou, Y. B., Wang, M. L., & Miao, T. D. (2004). The periodic wave solutions and solitary wave solutions for a class of nonlinear partial differential equations. Physics Letters A, 323, 77–88.10.1016/j.physleta.2004.01.056