541
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Numerical modelling of pollutant formation in a lifted methane–air vertical diffusion flame

ORCID Icon, , , & | (Reviewing Editor)
Article: 1302543 | Received 07 Dec 2016, Accepted 24 Feb 2017, Published online: 20 Mar 2017

References

  • Ansys-fluent theory guide. (2012). (Version 14.0). UK: Ansys-Fluent Sheffield.
  • Bandaru, R. V., & Turns, S. R. (2000). Turbulent jet flames in a crossflow: Effects of some jet, crossflow, and pilot-flame parameters on emissions. Combustion and Flame, 121, 137–151.10.1016/S0010-2180(99)00166-2
  • Barlow, R. S., & Frank, J. (1998). Effects of turbulence on species mass fractions in methane/air jet flames. 27th Symposium (international) on Combustion, 1087–1095, University of Colardo, Boulder.
  • Barths, H., Hasse, C., Bikas, G., & Peters, N. (2000). Simulation of combustion in direct injection diesel engines using an Eulerian particle flamlet model. International Symposium on Combustion, 28, 1161–1168.
  • Barths, H., Peters, N., Brehm, N., & Mack, A. (1998). Simulation of pollutant formation in a gasturbine combustor using unsteady flamelets. Proccedings of the Combustion Institute Institute, 27, 1841–1847.10.1016/S0082-0784(98)80026-X
  • Brookes, S. J., & Moss, J. B. (1999). Measurements of soot production and thermal radiation from confined turbulent jet diffusion flames of methane. Combustion and Flame, 116, 49–61.10.1016/S0010-2180(98)00027-3
  • Castiñeira, D., & Edgar, T. F. (2008). Computational fluid dynamics for simulation of wind-tunnel experiments on flare combustion systems. Energy & Fuels, 22, 1698–1706. doi:10.1021/ef700545j
  • Fenimore, C. P., & Jones, G. W. (1967). Oxidation of soot by hydroxyl radicals. The Journal of Physical Chemistry, 71, 593–597.10.1021/j100862a021
  • Flavio, C. C. G., Matthias, K., Peter, H., Nikolaos, Z., & Christian, B. (2011). Simulation of a lifted flame in a vitiated air environment. Proceedings of the European Combustion Meeting, 1, 12–40.
  • Frenklach, M., Smith, G. P., Golden, D. M., Moriarty, N. W., & Eiteneer, B. (2012, November). GRI mechanism. Retrieved from http://www.me.berkeley.edu/gri-mech/version30/text30.html.
  • Hughes, K. J., Tomlin, A. S., Dupont, V. A., & Pourkashanian, M. (2001). Experimental and modelling study of sulfur and nitrogen doped premixed methane flames at low pressure. Faraday Discussions, 119, 337–352.10.1039/b102061g
  • Lawal, M. S., Fairweather, M., Ingham, D. B., Ma, L., Pourkashanian, M., & Williams, A. (2010). Numerical study of emission characteristics of a jet flame in cross-flow. Combustion Science and Technology, 182, 1491–1510. doi:10.1080/00102202.2010.496379
  • Libby, P. A., & Williams, F. A. (1994). Turbulent reacting flows. California: Academic Press.
  • Lyle, K. H., Tseng, L. K., Gore, J. P., & Laurendeau, N. M. (1999). A study of pollutant emission characteristics of partially premixed turbulent jet flames. Combustion Science and Technology, 116, 627–629.
  • Mahmud, T., Sangha, S. K., Costa, M., & Santos, A. (2007). Experimental and computational study of a lifted, non-premixed turbulent free jet flame. Fuel, 86, 793–806.10.1016/j.fuel.2006.08.030
  • Menter, F. R., Langtry, R. B., & Volker, S. (1994). Two-equation eddy-viscosity turbulence model for engineering applications. American Institute of Aeronautics and Astronautics, 32, 1598–1605.10.2514/3.12149
  • Modest, M. F. (2003). Radiative heat transfer (p. 225). London: Academic Press.
  • Norton, T. S., Smyth, K. C., Miller, J. H., & SmookE, M. D. (1993). Comparison of experimental and computed species concentration and temperature profiles in laminar, two dimensional methane-air diffusion flames. Combustion Science and Technology, 90, 1–34.10.1080/00102209308907601
  • Peters, N. (1984). Laminar diffusion flamelet models in non-premixed turbulent combustion. Progress in Energy and Combustion Science, 10, 319–339.10.1016/0360-1285(84)90114-X
  • Saqr, K. M., & Wahid, M. A. (2011). Comparison of four eddy-viscosity turbulence models in the eddy dissipation modeling of turbulent diffusion flames. International Journal of Applied Mathematics and Mechanics, 7(19), 1–18.
  • Shih, T. H., Liou, W. W., Shabbir, A., Yang, Z., & Zhu, J. (1995). A new k-ε eddy viscosity model for high Reynolds number turbulent flows: Model development and validation. Computers and Fluids, 24, 227–238.10.1016/0045-7930(94)00032-T
  • Wang, L., Endrud, N. E., Turns, S. R., D’Agostini, M. D., & Slavejkov, A. G. (2002). A study of the influence of, oxygen index on the soot, radiation, and emission characteristics of turbulent jet flames. Combustion Science and Technology, 174, 45–72.10.1080/00102200290021245
  • Wilcox, D. C. (1988). Reassesment of the scale-determining equation for advanced turbulence models. American Institute of Aeronautics and Astronautics, 26, 1299–1310.10.2514/3.10041
  • Woolley, R. M., Fairweather, M., & Yunardi, Y.. (2009). Conditional moment closure modelling of soot formation in turbulent, non-premixed methane and propane flames. Fuel, 88, 393–407. doi:10.1016/j.fuel.2008.10.005
  • Yap, L. T., Pourkashanian, M., Howard, L., Williams, A., & Yetter, R. A. (1998). Nitric-oxide emission scaling of buoyancy-dominated oxygen-enriched and preheated methane turbulent-jet diffusion flames. Symposium (International) on Combustion, 27, 1451–1460.10.1016/S0082-0784(98)80552-3
  • Zeldovich, Y. B., Sadovnikov, Y. P., & Frank-Kamenetskii, D. (1947). Oxidation of nitrogen in combustion. Moscow: Academy of Sciences of the USSR.