1,326
Views
6
CrossRef citations to date
0
Altmetric
Research Article

Temperature and toxicity of the copper herbicide (NautiqueTM) to freshwater fish in field and laboratory trials

, , & | (Reviewing Editor)
Article: 1339386 | Received 06 Nov 2016, Accepted 04 Jun 2017, Published online: 22 Jun 2017

References

  • 6 NYCRR Part 327. (2014). New York State Department of the Environment. Environment Conservation Law, Chapter 6, Part 327. Use of chemicals for the control or elimination of aquatic vegetation. Accessed 11 September 2014.
  • Azenha, M., Vasconcelos, M. T., & Cabral, J. P. S. (1995). Organic ligands reduce copper toxicity in Pseudomonas syringae. Environmental Toxicology and Chemistry, 14, 369–373.10.1002/etc.v14:3
  • Baldwin, D. H., Sandahl, J. F., Labenia, J. S., & Scholz, N. L. (2003). Sublethal effects of copper on coho salmon: Impacts on nonoverlapping receptor pathways in the peripheral olfactory nervous system. Environmental Toxicology and Chemistry, 22, 2266–2274.
  • Beste, C. E. (1983). Herbicide Handbook of the Weed Science Society of America (5th ed.). Champaign, IL: Weed Science Society of America.
  • Chia, M. A., Galadima, S. Y., & Japhet, W. S. (2015). Combined effect of atrazine and copper on the growth, biomass production, morphology and antioxidant response of Scenedesmus quadricauda. Phycologia, 54, 109–117.10.2216/14-71.1
  • Closson, K. R., & Paul, E. A. (2014). Comparison of the toxicity of two chelated copper algaecides and copper sulfate to non-target fish. Bulletin of Environmental Contamination and Toxicology, 93, 660–665.10.1007/s00128-014-1394-3
  • De Boeck, G., van der Ven, K., Hattink, J., & Blust, R. (2006). Swimming performance and energy metabolism of rainbow trout, common carp and gibel carp respond differently to sublethal copper exposure. Aquatic Toxicology, 80, 92–100.10.1016/j.aquatox.2006.07.017
  • Dillon, M. E., Wang, G., & Huey, R. B. (2010). Global metabolic impacts of recent climate warming. Nature, 467, 704–706.10.1038/nature09407
  • Eisler, R. (1997). Copper hazards to fish, wildlife, and invertebrates: A synoptic review ( U.S. Geological Survey, Biological Resources Division, Biological Science Report USGS/BRD/BSR-1997-0002, 98 pp.).
  • Fedorenkova, A., Vonk, J. A., Lenders, H. J. R., Creemers, R. C. M., Breure, A. M., & Hendriks, A. J. (2012). Ranking ecological risks of multiple chemical stressors on amphibians. Environmental Toxicology and Chemistry, 31, 1416–1421.10.1002/etc.v31.6
  • Gamain, P., Gonzalez, P., Cachot, J., Clérandeau, C., Mazzella, N., Gourves, P. Y., & Morin, B. (2017). Combined effects of temperature and copper and S-metolachlor on embryo-larval development of the Pacific oyster, Crassostrea gigas. Marine Pollution Bulletin, 115, 201–210.10.1016/j.marpolbul.2016.12.018
  • Getsinger, K. D., Netherland, M. D., Grue, C. E., & Koschnick, T. J. (2008). Improvements in the use of aquatic herbicides and establishment of future research directions. Journal of Aquatic Plant Management, 46, 32–41.
  • Hamilton, M. A., Russo, R. C., & Thurston, R. V. (1977). Trimmed Spearman-Karber method for estimating median lethal concentrations in toxicity bioassays. Environmental Science & Technology, 11, 714–719.10.1021/es60130a004
  • Hansen, L. R., & Roslev, P. (2016). Behavioral responses of juvenile Daphnia magna after exposure to glyphosate and glyphosate-copper complexes. Aquatic Toxicology, 179, 36–43.10.1016/j.aquatox.2016.08.010
  • Hellmann, J. J., Byers, J. E., Bierwagen, B. G., & Dukes, J. S. (2008). Five potential consequences of climate change for invasive species. Conservation Biology, 22, 534–543.10.1111/j.1523-1739.2008.00951.x
  • Hodson, P. V., Borgmann, U., & Shear, H. (1979). Toxicity of copper to aquatic biota. In J. O. Nriagu (Ed.), Copper in the environment. Part 2: Health effects (pp. 307–372). New York, NY: John Wiley.
  • Intergovernmental Panel on Climate Change. (2007). Climate change 2007: The physical science basis. Agenda, 6, 333.
  • Khan, M. A. Q., Ahmed, S. A., Catalin, B., Khodadoust, A., Ajayi, O., & Vaughn, M. (2006). Effect of temperature on heavy metal toxicity to juvenile crayfish, Orconectes immunis (Hagen). Environmental Toxicology, 21, 513–520.10.1002/(ISSN)1522-7278
  • Kleinhenz, L. S., Nugegoda, D., Verspaandonk, E. R., Coombes, D. C., Howe, S., & Shimeta, J. (2016). Toxicity of an herbicide and adjuvant to saltmarsh invertebrates in the management of invasive grass; Comparative laboratory and field tests. Marine Pollution Bulletin, 109, 334–343.10.1016/j.marpolbul.2016.05.061
  • Langeland, K. A. (1996). Hydrilla verticillata (LF) Royle (Hydrocharitaceae), the perfect aquatic weed. Castanea, 293–304.
  • Lemus, M. J., & Chung, K. S. (1998. Effect of temperature on copper toxicity in Petenia Kraussii (Pisces: Cilclidae) juveniles. Fish Response to Toxic Environments. International Congress on the Biology of Fish, 107–120.
  • Madeira, P. T., Jacono, C. C., & Van, T. K. (2000). Monitoring hydrilla using two RAPD procedures and the nonindigenous aquatic species database. Journal of Aquatic Plant Management, 38, 33–40.
  • Mallatt, J. (1985). Fish gill structural changes induced by toxicants and other irritants: A statistical review. Canadian Journal of Fisheries and Aquatic Sciences, 42, 630–648.10.1139/f85-083
  • Mastin, B. J., & Rodgers, J. H. (2000). Toxicity and bioavailability of copper herbicides (clearigate, cutrine-plus, and copper sulfate) to freshwater animals. Archives of Environmental Contamination and Toxicology, 39, 445–451.10.1007/s002440010126
  • Masuda, K., & Boyd, C. E. (1993). Comparative evaluation of the solubility and algal toxicity of copper sulfate and chelated copper. Aquaculture, 117, 287–302.10.1016/0044-8486(93)90326-T
  • Owens, C. S., & Madsen, J. D. (1995). Low-temperature limits of water-hyacinth. Journal of Aquatic Plant Management, 33, 63–68.
  • Peterson, A. T., Papes, M., & Kluza, D. A. (2003). Predicting the potential invasive distributions of four alien plant species in North America. Weed Science, 51, 863–868.10.1614/P2002-081
  • Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D., & R Core Team. (2017). nlme: Linear and Nonlinear Mixed Effects Models. R package version 3.1-131. Retrieved from https://CRAN.R-project.org/package=nlme
  • R Core Team. (2016). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. Retrieved from https://www.R-project.org/
  • Supplemental Environmental Impact Statement Assessments of Aquatic Herbicides. (2000). Lacey, WA: Washington State Department of Ecology. Water Quality Program.
  • Taylor, L. N., McGeer, J., Wood, C., & McDonald, D. (1998). Modelling chronic thresholds for toxicity–physiological effects of chronic copper exposure to rainbow trout. Fish Response to Toxic Environments, 95.
  • Timmons, F. L. (2005). A history of weed control in the United States and Canada. Weed Science, 53, 748–761.10.1614/0043-1745(2005)053[0748:AHOWCI]2.0.CO;2
  • Tuurala, H., Pärt, P., Nikinmaa, M., & Soivio, A. (1984). The basal channels of secondary lamellae in Salmo gairdneri gills—A non-respiratory shunt. Comparative Biochemistry and Physiology, 79, 35–39.
  • USEPA. (2002). Methods for measuring the acute toxicity of effluents and receiving waters to freshwater and marine organism (5th ed). Washington, DC: EPA-821-R-02-012 US Environmental Protection Agency.
  • Villarroel, M. J., Sancho, E., Ferrando, M. D., & Andreu, E. (2003). Acute, chronic and sublethal effects of the herbicide propanil on Daphnia magna. Chemosphere, 53, 857–864.10.1016/S0045-6535(03)00546-0
  • Willis, B. E., & Bishop, W. M. (2016). Understanding fate and effects of copper pesticides in aquatic systems. Journal of Geoscience and Enviroment Protection, 4, 37–42. doi:10.4236/gep.2016.45004