345
Views
0
CrossRef citations to date
0
Altmetric
Educational Assessment & Evaluation

Exploring undergraduate students’ scientific reasoning in the force and motion concept

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Article: 2365579 | Received 22 Feb 2024, Accepted 04 Jun 2024, Published online: 02 Jul 2024

References

  • Avargil, S., Lavi, R., & Dori, Y. J. (2018). Students’ metacognition and metacognitive strategies in science education. In Y. J. Dori, Z. R. Mevarech, & D. R. Baker (Eds.), Cognition, metacognition, and culture in STEM education: Learning, teaching and assessment (pp. 33–64). Springer. https://doi.org/10.1007/978-3-319-66659-4_3
  • Awofala, A. O. A., & Lawani, A. O. (2020). Increasing mathematics achievement of senior secondary school students through differentiated instruction. Journal of Educational Sciences, 4(1), 1–19. https://doi.org/10.31258/jes.4.1.p.1-19
  • Bao, L., Koenig, K., Xiao, Y., Fritchman, J., Zhou, S., & Chen, C. (2022). Theoretical model and quantitative assessment of scientific thinking and reasoning. Physical Review Physics Education Research, 18(1), 010115. https://doi.org/10.1103/PhysRevPhysEducRes.18.010115
  • Bezci, F., & Sungur, S. (2021). How is middle school students’ scientific reasoning ability associated with gender and learning environment? Science Education International, 32(2), 96–106. https://doi.org/10.33828/sei.v32.i2.2
  • Boğar, Y. (2019). Evaluation of the scientific reasoning skills of 7th grade students in science course. Universal Journal of Educational Research, 7(6), 1430–1441. https://doi.org/10.13189/ujer.2019.070610
  • Bolger, M. S., Osness, J. B., Gouvea, J. S., & Cooper, A. C. (2021). Supporting scientific practice through model-based inquiry: A students’-eye view of grappling with data, uncertainty, and community in a laboratory experience. CBE—Life Sciences Education, 20(4), ar57. https://doi.org/10.1187/cbe.21-05-0128
  • Choowong, K., & Worapun, W. (2021). The development of scientific reasoning ability on the concept of light and image of grade 9 students by using inquiry-based learning 5E with prediction observation and explanation strategy. Journal of Education and Learning, 10(5), 152–162. https://doi.org/10.5539/jel.v10n5p152
  • Dolan, E., & Grady, J. (2010). Recognizing students’ scientific reasoning: A tool for categorizing complexity of reasoning during teaching by inquiry. Journal of Science Teacher Education, 21(1), 31–55. https://doi.org/10.1007/s10972-009-9154-7
  • Dunbar, K., & Klahr, D. (2013). Developmental differences in scientific discovery processes. In J. St. B. T. Evans, & K. Frankish (Eds.), In two minds: Dual processes and beyond (pp. 337–356). Routledge. https://doi.org/10.4324/9780203761618-9
  • Engelmann, K., Neuhaus, B. J., & Fischer, F. (2016). Fostering scientific reasoning in education – Meta-analytic evidence from intervention studies. Educational Research and Evaluation, 22(5–6), 333–349. https://doi.org/10.1080/13803611.2016.1240089
  • Erlangga, S. Y., Winingsih, P. H., & Saputro, H. (2021). Identification of student misconceptions using four-tier diagnostic instruments on straight motion materials. Compton: Jurnal Ilmiah Pendidikan Fisika, 8(2), 65–67. https://jurnal.ustjogja.ac.id/index.php/COMPTON/article/view/12923 https://doi.org/10.30738/cjipf.v8i2.12923
  • Erlina, N., Susantini, E., Wasis, W., Wicaksono, I., & Pandiangan, P. (2018). Evidence-based reasoning in inquiry-based physics teaching to increase students’ scientific. Journal of Baltic Science Education, 17(6), 972–985. https://doi.org/10.33225/jbse/18.17.972
  • Fischer, F., Chinn, C. A., Engelmann, K., & Osborne, J. (2018). Scientific reasoning and argumentation: The roles of domain-specific and domain-general knowledge. In K. S. Taber, & B. Akpan (Eds.), Science education (pp. 89–104). Springer. https://doi.org/10.1007/978-3-319-58685-4_6
  • Hasson, U., Chen, J., & Honey, C. J. (2015). Hierarchical process memory: Memory as an integral component of information processing. Trends in Cognitive Sciences, 19(6), 304–313. https://doi.org/10.1016/j.tics.2015.04.006
  • Hidayatulloh, W., Kuswanto, H., Santoso, P. H., Susilowati, E., & Hidayatullah, Z. (2021). Exploring students’ misconception in the frame of graphic and figural representation on projectile motion regarding the COVID-19 constraints. JIPF (Jurnal Ilmu Pendidikan Fisika), 6(3), 243–254. https://doi.org/10.26737/jipf.v6i3.2157
  • Iramaneerat, C., Smith, E. V., Jr, & Smith, R. M. (2008). An introduction to Rasch measurement. In J. W. Osborne (Ed.), Best practices in quantitative methods (pp. 50–71). Sage.
  • Kersey, A. J., Braham, E. J., Csumitta, K. D., Libertus, M. E., & Cantlon, J. F. (2018). No intrinsic gender differences in children’s earliest numerical abilities. Npj Science of Learning, 3(1), 12. https://doi.org/10.1038/s41539-018-0028-7
  • Kuhn, D., & Pearsall, S. (2000). Developmental origins of scientific thinking. Journal of Cognition and Development, 1(1), 113–129. https://doi.org/10.1207/S15327647JCD0101N_11
  • Lawson, A. E. (1985). A review of research on formal reasoning and science teaching. Journal of Research in Science Teaching, 22(7), 569–617. https://doi.org/10.1002/tea.3660220702
  • Lawson, A. E. (2004). The nature and development of scientific reasoning: A synthetic view. International Journal of Science and Mathematics Education, 2(3), 307–338. https://doi.org/10.1007/s10763-004-3224-2
  • Lawson, A. E. (2010). Basic inferences of scientific reasoning, argumentation, and discovery. Science Education, 94(2), 336–364. https://doi.org/10.1002/sce.20357
  • Lawson, A. E., Clark, B., Cramer-Meldrum, E., Falconer, K. A., Sequist, J. M., & Kwon, Y. J. (2000). Development of scientific reasoning in college biology: Do two levels of general hypothesis-testing skills exist? Journal of Research in Science Teaching, 37(1), 81–101. https://doi.org/10.1002/(SICI)1098-2736(200001)37:1<81::AID-TEA6>3.0.CO;2-I
  • Lazonder, A. W., & Egberink, A. (2014). Children’s acquisition and use of the control-of-variables strategy: Effects of explicit and implicit instructional guidance. Instructional Science, 42(2), 291–304. https://doi.org/10.1007/s11251-013-9284-3
  • Lazonder, A. W., & Harmsen, R. (2016). Meta-analysis of inquiry-based learning: Effects of guidance. Review of Educational Research, 86(3), 681–718. https://doi.org/10.3102/0034654315627366
  • Levin, I., Siegler, R. S., & Druyan, S. (1990). Misconceptions about motion: Development and training effects. Child Development, 61(5), 1544–1557. https://doi.org/10.1111/j.1467-8624.1990.tb02882.x
  • Linacre, J. M. (2012). Winsteps® Rasch measurement computer program user’s guide. Winsteps.com.
  • Lourenço, O. M. (2016). Developmental stages, Piagetian stages in particular: A critical review. New Ideas in Psychology, 40, 123–137. https://doi.org/10.1016/j.newideapsych.2015.08.002
  • Ludwin-Peery, E., Bramley, N. R., Davis, E., & Gureckis, T. M. (2020). Broken physics: A conjunction-fallacy effect in intuitive physical reasoning. Psychological Science, 31(12), 1602–1611. https://doi.org/10.1177/0956797620957610
  • Luo, M., Sun, D., Zhu, L., & Yang, Y. (2021). Evaluating scientific reasoning ability: Student performance and the interaction effects between grade level, gender, and academic achievement level. Thinking Skills and Creativity, 41, 100899. https://www.sciencedirect.com/science/article/pii/S1871187121001140 https://doi.org/10.1016/j.tsc.2021.100899
  • Luo, M., Wang, Z., Sun, D., Wan, Z. H., & Zhu, L. (2020). Evaluating scientific reasoning ability: The design and validation of an assessment with a focus on reasoning and the use of evidence. Journal of Baltic Science Education, 19(2), 261–275. https://doi.org/10.33225/jbse/20.19.261
  • Misnasanti, M., Utami, R. W., & Suwanto, F. R. (2017 Problem based learning to improve proportional reasoning of students in mathematics learning [Paper presentation]. In AIP Conference Proceedings, August (Vol. 1868). AIP Publishing.
  • Nasir, N. A. M., Singh, P., Narayanan, G., Han, C. T., Rasid, N. S., & Hoon, T. S. (2021). An analysis of undergraduate students’ ability in solving non-routine problems. Review of International Geographical Education Online, 11(4), 861–872. https://doi.org/10.33403/rigeo.8006800
  • Nieminen, P., Savinainen, A., & Viiri, J. (2013). Gender differences in learning of the concept of force, representational consistency, and scientific reasoning. International Journal of Science and Mathematics Education, 11(5), 1137–1156. https://doi.org/10.1007/s10763-012-9363-y
  • Novia, N., & Riandi, R. (2017). The analysis of students’ scientific reasoning ability in solving the modified Lawson classroom test of scientific reasoning (MLCTSR) problems by applying the levels of inquiry. Jurnal Pendidikan IPA Indonesia, 6(1), 116–122. https://doi.org/10.15294/jpii.v6i1.9600
  • O’Connor, J., Penney, D., Alfrey, L., Phillipson, S., Phillipson, S., & Jeanes, R. (2016). The development of the stereotypical attitudes in HPE scale. Australian Journal of Teacher Education, 41(7), 70–87. https://doi.org/10.14221/ajte.2016v41n7.5
  • Omarchevska, Y., Lachner, A., Richter, J., & Scheiter, K. (2022). Do video modeling and metacognitive prompts improve self-regulated scientific inquiry? Educational Psychology Review, 34(2), 1025–1061. https://doi.org/10.1007/s10648-021-09652-3
  • Pezzuti, L., Tommasi, M., Saggino, A., Dawe, J., & Lauriola, M. (2020). Gender differences and measurement bias in the assessment of adult intelligence: Evidence from the Italian WAIS-IV and WAIS-R standardizations. Intelligence, 79, 101436. https://doi.org/10.1016/j.intell.2020.101436
  • Piraksa, C., Srisawasdi, N., & Koul, R. (2014). Effect of gender on student’s scientific reasoning ability: A case study in Thailand. Procedia - Social and Behavioral Sciences, 116, 486–491. https://doi.org/10.1016/j.sbspro.2014.01.245
  • Radulović, B., & Stojanović, M. (2019). Research and evaluating of hypothetically-deductive student reasoning in Republic Serbia. Facta Universitatis, Series: Physics, Chemistry and Technology, 16(3), 249–256.
  • Reith, M., & Nehring, A. (2020). Scientific reasoning and views on the nature of scientific inquiry: Testing a new framework to understand and model epistemic cognition in science. International Journal of Science Education, 42(16), 2716–2741. https://doi.org/10.1080/09500693.2020.1834168
  • Sagala, R., Umam, R., Thahir, A., Saregar, A., & Wardani, I. (2019). The effectiveness of STEM-based on gender differences: The impact of physics concept understanding. European Journal of Educational Research, 8 (3), 753–761. https://doi.org/10.12973/eu-jer.8.3.753
  • Sari, D. I., Budayasa, I. K., & Juniati, D. (2017). The analysis of probability task completion; taxonomy of probabilistic thinking-based across gender in elementary school students [Paper presentation]. In AIP Conference Proceedings, August (Vol. 1868). AIP Publishing.
  • Schlatter, E., Molenaar, I., & Lazonder, A. W. (2021). Learning scientific reasoning: A latent transition analysis. Learning and Individual Differences, 92, 102043. https://doi.org/10.1016/j.lindif.2021.102043
  • Sumintono, B., & Widhiarso, W. (2014). Aplikasi model Rasch untuk penelitian ilmu-ilmu sosial (edisi revisi). Trim Komunikata Publishing House.
  • Sutiani, A., Situmorang, M., & Silalahi, A. (2021). Implementation of an inquiry learning model with science literacy to improve student critical thinking skills. International Journal of Instruction, 14(2), 117–138. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85101769206&partnerID=40&md5=a023ff175c9e8e4e83e9400b010b7cbc https://doi.org/10.29333/iji.2021.1428a
  • Tairab, H. H. (2015). Assessing students’ understanding of control of variables across three grade levels and gender. International Education Studies, 9(1), 44–54. https://doi.org/10.5539/ies.v9n1p44
  • Tomara, M., Tselfes, V., & Gouscos, D. (2017). Instructional strategies to promote conceptual change about force and motion: A review of the literature. Themes in Science & Technology Education, 10(1), 1–16.
  • Valanides, N. C. (1996). Formal reasoning and science. In P. Davies (Ed.), Ethnographies of reason (pp. 99–107). Routledge. https://doi.org/10.4324/9781315580555-2
  • Van Vo, D., & Csapó, B. (2021). Development of scientific reasoning test measuring control of variables strategy in physics for high school students: Evidence of validity and latent predictors of item difficulty. International Journal of Science Education, 43(13), 2185–2205. https://doi.org/10.1080/09500693.2021.1957515
  • Wancham, K., Tangdhanakanond, K., & Kanjanawasee, S. (2023). Sex and grade issues in influencing misconceptions about force and laws of motion: An application of cognitively diagnostic assessment. International Journal of Instruction, 16(2), 437–456. https://doi.org/10.29333/iji.2023.16224a
  • Waschl, N., & Burns, N. R. (2020). Sex differences in inductive reasoning: A research synthesis using meta-analytic techniques. Personality and Individual Differences, 164, 109959. https://doi.org/10.1016/j.paid.2020.109959
  • Winne, P. H. (2013). Self-regulated learning viewed from models of information processing. In B. J. Zimmerman & D. H. Schunk (Eds.), Self-regulated learning and academic achievement (pp. 145–178). Routledge.
  • Yang, F. Y. (2004). Exploring high school students’ use of theory and evidence in an everyday context: The role of scientific thinking in environmental science decision-making. International Journal of Science Education, 26(11), 1345–1364. https://doi.org/10.1080/0950069042000205404
  • Yenilmez, A., Sungur, S., & Tekkaya, C. (2005). Investigating students’ logical thinking abilities: The effects of gender and grade level. Hacettepe Üniversitesi Eğitim Fakültesi Dergisi, 28, 219–225.
  • Zimmerman, C. (2000). The development of scientific reasoning skills. Developmental Review, 20(1), 99–149. https://doi.org/10.1006/drev.1999.0497
  • Zimmerman, C., Olsho, A., Brahmia, S. W., Loverude, M., Boudreaux, A., & Smith, T. (2019 Towards understanding and characterizing expert covariational reasoning in physics [Paper presentation]. In Physics Education Research Conference Proceedings (pp. 693–698). https://doi.org/10.1119/perc.2019.pr.Zimmerman