1,411
Views
5
CrossRef citations to date
0
Altmetric
Review Article

Association, prediction, and engram cells in creative thinking

ORCID Icon & ORCID Icon | (Reviewing editor)
Article: 1493806 | Received 08 Feb 2018, Accepted 23 Jun 2018, Published online: 09 Jul 2018

References

  • Bach, D. R., Symmonds, M., Barnes, G., & Dolan, R. J. (2017). Whole-brain neural dynamics of probabilistic reward prediction. The Journal of Neuroscience : the Official Journal of the Society for Neuroscience, 37, 3789–3798. doi:10.1523/JNEUROSCI.2943-16.2017
  • Bartelle, B. B., Barandov, A., & Jasanoff, A. (2016). Molecular fMRI. The Journal of Neuroscience : the Official Journal of the Society for Neuroscience, 36, 4139–4148. doi:10.1523/JNEUROSCI.4050-15.2016
  • Beaty, R. E., Benedek, M., Silvia, P. J., & Schacter, D. L. (2016). Creative cognition and brain network dynamics. Trends Cognition Sciences, 20, 87–95. doi:10.1016/j.tics.2015.10.004
  • Beaty, R. E., Benedek, M., Wilkins, R. W., Jauk, E., Fink, A., Silvia, P. J., & Neubauer, A. C. (2014). Creativity and the default network: A functional connectivity analysis of the creative brain at rest. Neuropsychologia, 64, 92–98. doi:10.1016/j.neuropsychologia.2014.09.019
  • Beaty, R. E., Silvia, P. J., Nusbaum, E. C., Jauk, E., & Benedek, M. (2014). The roles of associative and executive processes in creative cognition. Memory & Cognition, 42, 1186–1197. doi:10.3758/s13421-014-0428-8
  • Boden, M. A. (2015). How computational creativity began. In T. R. Besold, M. Schorlemmer, & A. Smaill (Eds.), Computational creativity research-towards creative machines (pp. 6–12). Paris, France: Atlantis Press.
  • Breakspear, M. (2017). Dynamic models of large-scale brain activity. Nature Neuroscience, 20, 340–352. doi:10.1038/nn.4497
  • Bronowski, J. (1972). Science and human values. New York: Harper and Row.
  • Camina, E., & Güell, F. (2017). The neuroanatomical, neurophysiological and psychological basis of memory: Current models and their origins. Frontiers in Pharmacology, 8, 438. doi:10.3389/fphar.2017.00438
  • Campbell, D. T. (1960). Blind variation and selective retention in creative thought as in other knowledge processes. Psychological Review, 67, 380–400. doi:10.1037/h0040373
  • Clark, A. (2013). Whatever next? Predictive brains, situated agents, and the future of cognitive science. The Behavioral and Brain Sciences, 36, 181–204. doi:10.1017/S0140525X12000477
  • Dietrich, A., & Haider, H. (2015). Human creativity, evolutionary algorithms, and predictive representations: The mechanics of thought trials. Psychonomic Bulletin & Review, 22, 897–915. doi:10.3758/s13423-014-0743-x
  • Finke, R. A., Ward, T. B., & Smith, S. M. (1992). Creative cognition: Theory, research, and applications. Cambridge: MIT Press.
  • Friston, K. (2010). The free-energy principle: A unified brain theory? Nature Reviews. Neuroscience, 11, 127–138. doi:10.1038/nrn2787
  • Gabora, L. (2017). Honing theory: A complex systems framework for creativity. Nonlinear Dynamics, Psychology, and Life Sciences, 21, 35–88.
  • Glaveanu, V., Lubart, T., Bonnardel, N., Botella, M., De Biaisi, P. M., Desainte-Catherine, M., … Zenasni, F. (2013). Creativity as action: Findings from five creative domains. Frontiers in Psychology, 16, 176. doi:10.3389/fpsyg.2013.00176
  • Guilford, J. P. (1967). The nature of human intelligence. New York: McGraw-Hill.
  • Hassabis, D., Kumaran, D., Summerfield, C., & Botvinick, M. (2017). Neuroscience-inspired artificial intelligence. Neuron, 95, 245–258. doi:10.1016/j.neuron.2017.06.011
  • Hebb, D. O. (1949). The organization of behavior. New York: John Wiley & Sons.
  • Heilman, K. M. (2016). Possible brain mechanisms of creativity. Archives Clinical Neuropsychology, 31, 285–296. doi:10.1093/arclin/acw009
  • Hélie, S., & Sun, R. (2010). Incubation, insight, and creative problem solving: A unified theory and a connectionist model. Psychological Review, 117, 994–1024. doi:10.1037/a0019532
  • Hilbert, M., & López, P. (2011). The world’s technological capacity to store, communicate, and compute information. Science, 332, 60–65. doi:10.1126/science.1200970
  • Huyck, C. R., & Passmore, P. J. (2013). A review of cell assemblies. Biological Cybernetics, 107, 263–288. doi:10.1007/s00422-013-0555-5
  • Jausovec, N. (2000). Differences in cognitive processes between gifted, intelligent, creative, and average individuals while solving complex problems: An EEG study. Intelligence, 28, 213–237. doi:10.1016/S0160-2896(00)00037-4
  • Jausovec, N., & Jausovec, K. (2000). EEG activity during the performance of complex mental problems. International Journal of Psychophysiology : Official Journal of the International Organization of Psychophysiology, 36, 73–88. doi:10.1016/S0167-8760(99)00113-0
  • Jordanous, A., Keller, B., & Csermely, P. (2016). Modelling creativity: Identifying key components through a corpus-based approach. PLoS. One, 11, e0162959. doi:10.1371/journal.pone.0162959
  • Kanematsu, H., & Barry, D. M. (2016). Theory of creativity. In H. Kanematsu & D. M. Barry (Eds), STEM and ICT education in intelligent environments (pp. 9–13). Cham, Switzerland: Springer International Publishing.
  • Koestler, A. (1964). The act of creation. New York: Penguin Books.
  • Liu, X., Ramirez, S., Pang, P. T., Puryear, C. B., Govindarajan, A., Deisseroth, K., & Tonegawa, S. (2012). Optogenetic stimulation of a hippocampal engram activates fear memory recall. Nature, 484, 381–385. doi:10.1038/nature11028
  • Markram, H., Muller, E., Ramaswamy, S., Reimann, M. W., Abdellah, M., Sanchez, C. A., … Schürmann, F. (2015). Reconstruction and simulation of neocortical microcircuitry. Cell, 163, 456–492. doi:10.1016/j.cell.2015.09.029
  • Mednick, S. A. (1962). The associative basis of the creative process. Psychological Review, 69, 220–232.
  • Nagel, G., Szellas, T., Huhn, W., Kateriya, S., Adeishvili, N., Berthold, P., … Bamberg, E. (2003). Channelrhodopsin-2, a directly light-gated cation-selective membrane channel. Proceedings of the National Academy of Sciences of the United States of America, 100, 13940–13945. doi:10.1073/pnas.1936192100
  • Pétervári, J., Osman, M., & Bhattacharya, J. (2016). The role of intuition in the generation and evaluation stages of creativity. Frontiers in Psychology, 7, 1420. doi:10.3389/fpsyg.2016.01420
  • Roberts, R. P., Wiebels, K., Sumner, R. L., Van Mulukom, V., Grady, C. L., Schacter, D. L., & Addis, D. R. (2017). An fMRI investigation of the relationship between future imagination and cognitive flexibility. Neuropsychologia, 27, 156–172. doi:10.1016/j.neuropsychologia.2016.11.019
  • Schröger, E., Kotz, S. A., & SanMiguel, I. (2015). Bridging prediction and attention in current research on perception and action. Brain Research, 1626, 1–13. doi:10.1016/j.brainres.2015.08.037
  • Simonton, D. K. (2010). Creative thought as blind-variation and selective-retention: Combinatorial models of exceptional creativity. Physics of Life Reviews, 7, 190–194. doi:10.1016/j.plrev.2010.05.004
  • Simpson, J. A., & Weiner, E. S. C., & Oxford University Press. (1989). Oxford English dictionary (2nd ed.). New York: Author.
  • Stanton, P. K., & Sejnowski, T. J. (1989). Associative long-term depression in the hippocampus induced by hebbian covariance. Nature, 339, 215–218. doi:10.1038/339215a0
  • Sternberg, R. J. (2006). The nature of creativity. Creativity Research Journal, 18, 87–98. doi:10.1207/s15326934crj1801_10
  • Sternberg, R. J., & Sternberg, K. (2011). Cognitive psychology (6th ed.). Belmont, CA: Wadsworth.
  • Takeuchi, H., Taki, Y., Hashizume, H., Sassa, Y., Nagase, T., Nouchi, R., & Kawashima, R. (2012). The association between resting functional connectivity and creativity. Cerebral Cortex, 22, 2921–2929. doi:10.1093/cercor/bhr371
  • Takeuchi, H., Taki, Y., Sassa, Y., Hashizume, H., Sekiguchi, A., Fukushima, A., & Kawashima, R. (2010). White matter structures associated with creativity: Evidence from diffusion tensor imaging. Neuroimage, 51, 11–18. doi:10.1016/j.neuroimage.2010.02.035
  • Teufel, C., & Fletcher, P. C. (2016). The promises and pitfalls of applying computational models to neurological and psychiatric disorders. Brain, 139, 2600–2608. doi:10.1093/brain/aww209
  • Tonegawa, S., Liu, X., Ramirez, S., & Redondo, R. (2015a). Memory engram cells have come of age. Neuron, 87, 918–931. doi:10.1016/j.neuron.2015.08.002
  • Tonegawa, S., Pignatelli, M., Roy, D. S., & Ryan, T. J. (2015b). Memory engram storage and retrieval. Current Opinion in Neurobiology, 35, 101–109. doi:10.1016/j.conb.2015.07.009
  • Trabesinger, A. (2017a). Quantum computing: Towards reality. Nature, 543, S1. doi:10.1038/543S1a
  • Trabesinger, A. (2017b). Quantum leaps, bit by bit. Nature, 543, S2–S3. doi:10.1038/543S2a
  • Wallas, G. (1926). The art of thought. NewYork: Harcourt Brace.
  • Wang, J. H., & Cui, S. (2017). Associative memory cells: Formation, function and perspective. Version 2. F1000Research, 6, 283. doi:10.12688/f1000research.11096.2
  • Wei, D., Yang, J., Li, W., Wang, K., Zhang, Q., & Qiu, J. (2014). Increased resting functional connectivity of the medial prefrontal cortex in creativity by means of cognitive stimulation. Cortex, 51, 92–102. doi:10.1016/j.cortex.2013.09.004
  • Wiggins, G. A., & Bhattacharya, J. (2014). Mind the gap: An attempt to bridge computational and neuroscientific approaches to study creativity. Frontiers in Human Neuroscience, 8, 540. doi:10.3389/fnhum.2014.00540
  • Wiggins, G. A., & Forth, J. (2015). DyOT: A computational theory of creativity as everyday reasoning from learned information. In T. R. Besold, M. Schorlemmer, & A. Smaill (Eds.), Computational creativity research-towards creative machines (pp. 127–148). Paris, France: Atlantis Press.
  • Wu, C., Zhong, S., Chen, H., & Wennekers, T. (2016). Discriminating the difference between remote and close association with relation to white-matter structural connectivity. PLoS One, 11, e0165053. doi:10.1371/journal.pone.0165053