1,734
Views
2
CrossRef citations to date
0
Altmetric
Research Article

A comparative numerical study of turbulence models for the simulation of fire incidents: Application in ventilated tunnel fires

, , & | (Reviewing Editor)
Article: 1000509 | Received 10 Jul 2014, Accepted 16 Dec 2014, Published online: 09 Jan 2015

References

  • Abanto, J., Reggio, M., Barrero, D., & Petro, E. (2006). Prediction of fire and smoke propagation in an underwater tunnel. Tunnelling and Underground Space Technology, 22, 90–95.
  • Anderson, W., Pastor, E., Butler, B., Catchpole, E., Dupuy, J. L., Fernandes, P., … Ventura, J. (2006, November 27–30). Evaluating models to estimate flame characteristics for free-burning fires using laboratory and field data. In 5th International Conference on Forest Fire Research. Coimbra, Portugal.
  • Apte, V. B., Green, A. R., & Kent, J. H. (1991). Pool fire plume flow in a large-scale wind tunnel. Fire Safety Science, 3, 425–434.10.3801/IAFSS.FSS.3-425
  • Banjac, M., & Nikolic, B. (2008). Numerical study of smoke flow control in tunnel fires using ventilation systems. FME Transactions, 36, 145–150.
  • Barakos, G., Mitsoulis, E., & Assimacopoulos, D. (1994). Natural convection flow in a square cavity revisited: Laminar and turbulent models with wall functions. International Journal for Numerical Methods in Fluids, 18, 695–719.10.1002/(ISSN)1097-0363
  • Bettelini, M. (2001, September 17–18). CFD for tunnel safety. In Fluent users’ meeting. Bingen.
  • Chow, W. K. (1998). On smoke control for tunnels by longitudinal ventilation. Tunnelling and Underground Space Technology, 13, 271–275.10.1016/S0886-7798(98)00061-3
  • Fletcher, D. F., Kent, J. H., Apte, V. B., & Green, A. R. (1994). Numerical simulations of smoke movement from a pool fire in a ventilated tunnel. Fire Safety Journal, 23, 305–325.10.1016/0379-7112(94)90033-7
  • Gao, P. Z., Liu, S. L., Chow, W. K., & Fong, N. K. (2004). Large eddy simulations for studying tunnel smoke ventilation. Tunnelling and Underground Space Technology, 19, 577–586.10.1016/j.tust.2004.01.005
  • Grant, G. B., Jagger, S. F., & Lea, C. J. (1998). Fires in tunnels. Philosophical Transactions: Mathematical, Physical and Engineering Sciences, 356, 2873–2906.
  • Hostikka, S. (2008). Development of fire simulation models for radiative heat transfer and probabilistic risk assessment ( PhD Thesis). VTT Technical Research Centre of Finland, Espoo. ISBN 978-951-38-7099-7.
  • Hu, L. H., Huo, R., Wang, H. B., & Yang, R. X. (2007). Experimental and numerical studies on longitudinal smoke temperature distribution upstream and downstream from the fire in a road tunnel. Journal of Fire Sciences, 25, 23–43.10.1177/0734904107062357
  • Hu, L. H., Peng, W., & Huo, R. (2008). Critical wind velocity for arresting upwind gas and smoke dispersion induced by near-wall fire in a road tunnel. Journal of Hazardous Materials, 150, 68–75.10.1016/j.jhazmat.2007.04.094
  • Hui, Y., Li, J., & Lixin, Y. (2009). Numerical analysis of tunnel thermal plume control using longitudinal ventilation. Fire Safety Journal, 44, 1067–1077.10.1016/j.firesaf.2009.07.006
  • Kader, B. A. (1981). Temperature and concentration profiles in fully turbulent boundary layers. International Journal of Heat and Mass Transfer, 24, 1541–1544.10.1016/0017-9310(81)90220-9
  • Kang, K. (2006). Computational study of longitudinal ventilation control during an enclosure fire within a tunnel. Journal of Fire Protection Engineering, 16, 159–181.10.1177/1042391506056737
  • Launder, B. E., & Spalding, D. B. (1974). The numerical computation of turbulent flows. Computer Methods in Applied Mechanics and Engineering, 3, 269–289.10.1016/0045-7825(74)90029-2
  • Lee, S. R., & Ryou, H. S. (2005). An experimental study of the effect of the aspect ratio on the critical velocity in longitudinal ventilation tunnel fires. Journal of Fire Sciences, 23, 119–138.10.1177/0734904105044630
  • Lee, S. R., & Ryou, H. S. (2006). A numerical study on smoke movement in longitudinal ventilation tunnel fires for different aspect ratio. Building and Environment, 41, 719–725.10.1016/j.buildenv.2005.03.010
  • Massachusetts Highway Department. (1995). Memorial tunnel fire ventilation test program comprehensive test report.
  • Menter, F. R. (1993, July 6–9). Zonal two equation k-ω turbulence models for aerodynamic flows. In AIAA 24th Fluid Dynamics Conference. Orlando, FL, AIAA 93-2906.
  • Miloua, H., Azzi, A., & Wang, H. Y. (2011). Evaluation of different numerical approaches for a ventilated tunnel fire. Journal of Fire Sciences, 29, 403–429.10.1177/0734904111400976
  • Oka, Y., & Atkinson, G. T. (1995). Control of smoke flow in tunnel fires. Fire Safety Journal, 25, 305–322.10.1016/0379-7112(96)00007-0
  • Stokos, K. G., Vrahliotis, S. I., Pappou, Th. I., & Tsangaris, S. (2012, July 4–7). Development and validation of a 3-D Navier–Stokes solver including heat transfer and natural convection. In Proceedings of 5th International Conference from Scientific Computing to Computational Engineering, 5th IC-SCCE. Athens Greece.
  • Stokos, K. G., Vrahliotis, S. I., Pappou, Th. I., & Tsangaris, S. (2013, May 25–27). Development and validation of a Navier–Stokes solver including heat transfer and mixed convection. In Proceedings of 10th International Congress on Mechanics, 10th HSTAM. Chania, Crete, Greece.
  • Vrahliotis, S., Pappou, Th, & Tsangaris, S. (2012). Artificial compressibility 3-D Navier–Stokes solver for unsteady incompressible flows with hybrid grids. Engineering Applications of Computational Fluid Mechanics, 6, 248–270.10.1080/19942060.2012.11015419
  • Wu, Y., & Bakar, M. Z. A. (2000). Control of smoke flow in tunnel fires using longitudinal ventilation systems—A study of the critical velocity. Fire Safety Journal, 35, 363–390.10.1016/S0379-7112(00)00031-X