21,288
Views
111
CrossRef citations to date
0
Altmetric
Review Article

Self-healing composites: A review

ORCID Icon, & | (Reviewing Editor)
Article: 1075686 | Received 16 Apr 2015, Accepted 17 Jul 2015, Published online: 19 Aug 2015

References

  • Aïssa, B., Tagziria, K., Haddad, E., Jamroz, W., Loiseau, J., Higgins, A., … Rosei, F. (2012). The self-healing capability of carbon fibre composite structures subjected to hypervelocity impacts simulating orbital space debris. ISRN Nanomaterials, 2012, 1–16. doi:10.5402/2012/351205
  • Aïssa, B., Therriault, D., Haddad, E., & Jamroz, W. (2012). Self-healing materials systems: Overview of major approaches and recent developed technologies. Advances in Materials Science and Engineering, 2012, 1–17. doi:10.1155/2012/854203
  • Aragón, A. M., Saksena, R., Kozola, B. D., Geubelle, P. H., Christensen, K. T., & White, S. R. (2013). Multi-physics optimization of three-dimensional microvascular polymeric components. Journal of Computational Physics, 233, 132–147. doi:10.1016/j.jcp.2012.07.036
  • Banea, M. D., da Silva, L. F. M., Campilho, R. D. S. G., & Sato, C. (2014). Smart adhesive joints: An overview of recent developments. The Journal of Adhesion, 90, 16–40. doi:10.1080/00218464.2013.785916
  • Bejan, A., & Lorente, S. (2008). Vascularized multi-functional materials and structures. Multi-Functional Materials and Structures, Pts 1 and 2, 47–50, 511–514
  • Bejan, A., Lorente, S., & Wang, K. M. (2006). Networks of channels for self-healing composite materials. Journal of Applied Physics, 100, 033528. doi:10.1063/1.2218768
  • Bellan, L. M., Kniazeva, T., Kim, E. S., Epshteyn, A. A., Cropek, D. M., Langer, R., & Borenstein, J. T. (2012). Fabrication of a hybrid microfluidic system incorporating both lithographically patterned microchannels and a 3D fiber-formed microfluidic network. Advanced Healthcare Materials, 1, 164–167. doi:10.1002/adhm.201100052
  • Bellan, L. M., Pearsall, M., Cropek, D. M., & Langer, R. (2012). A 3D Interconnected microchannel network formed in gelatin by sacrificial shellac microfibers. Advanced Materials, 24, 5187–5191. doi:10.1002/adma.201200810
  • Bellan, L. M., Singh, S. P., Henderson, P. W., Porri, T. J., Craighead, H. G., & Spector, J. A. (2009). Fabrication of an artificial 3-dimensional vascular network using sacrificial sugar structures. Soft Matter, 5, 1354–1357. doi:10.1039/B819905a
  • Billiet, S., Van Camp, W., Hillewaere, X. K. D., Rahier, H., & Du Prez, F. E. (2012). Development of optimized autonomous self-healing systems for epoxy materials based on maleimide chemistry. Polymer, 53, 2320–2326. doi:10.1016/j.polymer.2012.03.061
  • Blaiszik, B. J., Baginska, M., White, S. R., & Sottos, N. R. (2010). Autonomic recovery of fiber/matrix interfacial bond strength in a model composite. Advanced Functional Materials, 20, 3547–3554. doi:10.1002/adfm.201000798
  • Blaiszik, B. J., Caruso, M. M., McIlroy, D. A., Moore, J. S., White, S. R., & Sottos, N. R. (2009). Microcapsules filled with reactive solutions for self-healing materials. Polymer, 50, 990–997. doi:10.1016/j.polymer.2008.12.040
  • Blaiszik, B. J., Kramer, S. L. B., Olugebefola, S. C., Moore, J. S., Sottos, N. R., & White, S. R. (2010). Self-healing polymers and composites. Annual Review of Materials Research, 40, 179–211. doi:10.1146/annurev-matsci-070909-104532
  • Blaiszik, B. J., Sottos, N. R., & White, S. R. (2008). Nanocapsules for self-healing materials. Composites Science and Technology, 68, 978–986. doi:10.1016/j.compscitech.2007.07.021
  • Bleay, S. M., Loader, C. B., Hawyes, V. J., Humberstone, L., & Curtis, P. T. (2001). A smart repair system for polymer matrix composites. Composites Part A: Applied Science and Manufacturing, 32, 1767–1776. doi:10.1016/S1359-835x(01)00020-3
  • Börrnert, F., Gorantla, S., Bachmatiuk, A., Warner, J. H., Ibrahim, I., Thomas, J., … Rümmeli, M. H. (2010). In situ observations of self-repairing single-walled carbon nanotubes. Physical Review B, 81. doi:10.1103/PhysRevB.81.201401
  • Brown, E. N., Kessler, M. R., Sottos, N. R., & White, S. R. (2003). In situ poly(urea-formaldehyde) microencapsulation of dicyclopentadiene. Journal of Microencapsulation, 20, 719–730. doi:10.1080/0265204031000154160
  • Brown, E. N., Sottos, N. R., & White, S. R. (2002). Fracture testing of a self-healing polymer composite. Experimental Mechanics, 42, 372–379. doi:10.1177/001448502321548193
  • Brown, E. N., White, S. R., & Sottos, N. R. (2004). Microcapsule induced toughening in a self-healing polymer composite. Journal of Materials Science, 39, 1703–1710. doi:10.1023/B:Jmsc.0000016173.73733.Dc
  • Brown, E. N., White, S. R., & Sottos, N. R. (2005). Retardation and repair of fatigue cracks in a microcapsule toughened epoxy composite—Part II: In situ self-healing. Composites Science and Technology, 65, 2474–2480. doi:10.1016/j.compscitech.2005.04.053
  • Brown, E. N., White, S. R., & Sottos, N. R. (2006). Fatigue crack propagation in microcapsule-toughened epoxy. Journal of Materials Science, 41, 6266–6273. doi:10.1007/s10853-006-0512-y
  • Caruso, M. M., Blaiszik, B. J., White, S. R., Sottos, N. R., & Moore, J. S. (2008). Full recovery of fracture toughness using a nontoxic solvent‐based self‐healing system. Advanced Functional Materials, 18, 1898–1904. doi:10.1002/adfm.200800300
  • Caruso, M. M., Delafuente, D. A., Ho, V., Sottos, N. R., Moore, J. S., & White, S. R. (2007). Solvent-promoted self-healing epoxy materials. Macromolecules, 40, 8830–8832. doi:10.1021/Ma701992z
  • Chen, C., Ji, H. W., & Wang, H. W. (2013). Damage properties simulations of self-healing composites. Journal of Nanoscience and Nanotechnology, 13, 6679–6686. doi:10.1166/jnn.2013.7780
  • Chen, C., Peters, K., & Li, Y. (2013). Self-healing sandwich structures incorporating an interfacial layer with vascular network. Smart Materials and Structures, 22, 025031. doi:10.1088/0964-1726/22/2/025031
  • Chen, X. X., Wudl, F., Mal, A. K., Shen, H. B., & Nutt, S. R. (2003). New thermally remendable highly cross-linked polymeric materials. Macromolecules, 36, 1802–1807. doi:10.1021/Ma0210675
  • Chen, Y., & Guan, Z. (2013). Self-assembly of core–shell nanoparticles for self-healing materials. Polymer Chemistry, 4, 4885. doi:10.1039/c3py00078 h
  • Cho, K. H., Lee, J., Kim, M. H., & Bejan, A. (2010). Vascular design of constructal structures with low flow resistance and nonuniformity. International Journal of Thermal Sciences, 49, 2309–2318. doi:10.1016/j.ijthermalsci.2010.07.009
  • Cho, S. H., Andersson, H. M., White, S. R., Sottos, N. R., & Braun, P. V. (2006). Polydimethylsiloxane-based self-healing materials. Advanced Materials, 18, 997–1000. doi:10.1002/adma.200501814
  • Cho, S. H., White, S. R., & Braun, P. V. (2009). Self-healing polymer coatings. Advanced Materials, 21, 645–649. doi:10.1002/adma.200802008
  • Choi, H., Kim, K. Y., & Park, J. M. (2013). Encapsulation of aliphatic amines into nanoparticles for self-healing corrosion protection of steel sheets. Progress in Organic Coatings, 76, 1316–1324. doi:10.1016/j.porgcoat.2013.04.005
  • Choi, N. W., Cabodi, M., Held, B., Gleghorn, J. P., Bonassar, L. J., & Stroock, A. D. (2007). Microfluidic scaffolds for tissue engineering. Nature Materials, 6, 908–915. doi:10.1038/Nmat2022
  • Chu, H. T., Zhang, Z. C., Liu, Y. J., & Leng, J. S. (2014). Self-heating fiber reinforced polymer composite using meso/macropore carbon nanotube paper and its application in deicing. Carbon, 66, 154–163. doi:10.1016/j.carbon.2013.08.053
  • Coope, T. S., Mayer, U. F. J., Wass, D. F., Trask, R. S., & Bond, I. P. (2011). Self-healing of an epoxy resin using Scandium(III) Triflate as a catalytic curing agent. Advanced Functional Materials, 21, 4624–4631. doi:10.1002/adfm.201101660
  • Coppola, A. M., Thakre, P. R., Sottos, N. R., & White, S. R. (2014). Tensile properties and damage evolution in vascular 3D woven glass/epoxy composites. Composites Part A: Applied Science and Manufacturing, 59, 9–17. doi:10.1016/j.compositesa.2013.12.006
  • Dong, H. D., Esser-Kahn, A. P., Thakre, P. R., Patrick, J. F., Sottos, N. R., White, S. R., & Moore, J. S. (2012). Chemical treatment of poly(lactic acid) fibers to enhance the rate of thermal depolymerization. Acs Applied Materials & Interfaces, 4, 503–509. doi:10.1021/Am2010042
  • Dry, C. (1996). Procedures developed for self-repair of polymer matrix composite materials. Composite Structures, 35, 263–269. doi:10.1016/0263-8223(96)00033-5
  • Dry, C., & McMillan, W. (1996). Three-part methylmethacrylate adhesive system as an internal delivery system for smart responsive concrete. Smart Materials & Structures, 5, 297–300. doi:10.1088/0964-1726/5/3/007
  • Dry, C., & Sottos, N. R. (1993). Passive smart self-repair in polymer matrix composite-materials. Smart Materials, 1916, 438–444. doi:10.1117/12.148501
  • Dry, C. M. (2000). Three designs for the internal release of sealants, adhesives, and waterproofing chemicals into concrete to reduce permeability. Cement and Concrete Research, 30, 1969–1977. doi:10.1016/S0008-8846(00)00415-4
  • Esser-Kahn, A. P., Thakre, P. R., Dong, H., Patrick, J. F., Vlasko-Vlasov, V. K., Sottos, N. R., … White, S. R. (2011). Three-dimensional microvascular fiber-reinforced composites. Advanced Materials, 23, 3654–3658. doi:10.1002/adma.201100933
  • Fehrman, B. C., & Korde, U. A. (2013). Targeted delivery of acoustic energy for self-healing. Journal of Intelligent Material Systems and Structures, 24, 1865–1887. doi:10.1177/1045389x13483184
  • Fereidoon, A., Ghorbanzadeh Ahangari, M., & Jahanshahi, M. (2013). Effect of nanoparticles on the morphology and thermal properties of self-healing poly(urea-formaldehyde) microcapsules. Journal of Polymer Research, 20. doi:10.1007/s10965-013-0151-3
  • Frei, R., McWilliam, R., Derrick, B., Purvis, A., Tiwari, A., & Di Marzo Serugendo, G. (2013). Self-healing and self-repairing technologies. The International Journal of Advanced Manufacturing Technology, 69, 1033–1061. doi:10.1007/s00170-013-5070-2
  • Galindez-Jamioy, C. A., & López-Higuera, J. M. (2012). Brillouin distributed fiber sensors: An overview and applications. Journal of Sensors, 2012, 1–17. doi:10.1155/2012/204121
  • Gergely, R. C. R., Pety, S. J., Krull, B. P., Patrick, J. F., Doan, T. Q., Coppola, A. M., & White, S. R. (2014). Multidimensional vascularized polymers using degradable sacrificial templates. Advanced Functional Materials. doi:10.1002/adfm.201403670
  • Golden, A. P., & Tien, J. (2007). Fabrication of microfluidic hydrogels using molded gelatin as a sacrificial element. Lab on a Chip, 7, 720–725. doi:10.1039/B618409j
  • Gualandi, C., Zucchelli, A., Osorio, M. F., Belcari, J., & Focarete, M. L. (2013). Nanovascularization of polymer matrix: Generation of nanochannels and nanotubes by sacrificial electrospun fibers. Nano Letters, 13, 5385–5390. doi:10.1021/Nl402930x
  • Guimard, N. K., Oehlenschlaeger, K. K., Zhou, J., Hilf, S., Schmidt, F. G., & Barner-Kowollik, C. (2012). Current trends in the field of self-healing materials. Macromolecular Chemistry and Physics, 213, 131–143. doi:10.1002/macp.201100442
  • Guo, S. Z., Gosselin, F., Guerin, N., Lanouette, A. M., Heuzey, M. C., & Therriault, D. (2013). Solvent-cast three-dimensional printing of multifunctional microsystems. Small, 9, 4118–4122. doi:10.1002/smll.201300975
  • Habault, D., Zhang, H., & Zhao, Y. (2013). Light-triggered self-healing and shape-memory polymers. Chemical Society Reviews, 42, 7244–7256. doi:10.1039/C3CS35489 J
  • Hamilton, A. R., Sottos, N. R., & White, S. R. (2012a). Pressurized vascular systems for self- healing materials. Journal of The Royal Society Interface, 9, 1020–1028. doi:10.1098/rsif.2011.0508
  • Hamilton, A. R., Sottos, N. R., & White, S. R. (2012b). Mitigation of fatigue damage in self-healing vascular materials. Polymer, 53, 5575–5581. doi:10.1016/j.polymer.2012.09.050
  • Hansen, C. J., Saksena, R., Kolesky, D. B., Vericella, J. J., Kranz, S. J., Muldowney, G. P., … Lewis, J. A. (2013). High-throughput printing via microvascular multinozzle arrays. Advanced Materials, 25, 96–102. doi:10.1002/adma.201203321
  • Hansen, C. J., White, S. R., Sottos, N. R., & Lewis, J. A. (2011). Accelerated self-healing via ternary interpenetrating microvascular networks. Advanced Functional Materials, 21, 4320–4326. doi:10.1002/adfm.201101553
  • Hansen, C. J., Wu, W., Toohey, K. S., Sottos, N. R., White, S. R., & Lewis, J. A. (2009). Self-healing materials with interpenetrating microvascular networks. Advanced Materials, 21, 4143–4147. doi:10.1002/adma.200900588
  • He, J. K., Mao, M., Liu, Y. X., Shao, J. Y., Jin, Z. M., & Li, D. C. (2013). Fabrication of nature-inspired microfluidic network for perfusable tissue constructs. Advanced Healthcare Materials, 2, 1108–1113. doi:10.1002/adhm.201200404
  • Herbst, F., Döhler, D., Michael, P., & Binder, W. H. (2013). Self-healing polymers via supramolecular forces. Macromolecular Rapid Communications, 34, 203–220. doi:10.1002/marc.201200675
  • Hong, Y., & Su, M. (2012). Multifunctional self-healing and self-reporting polymer composite with integrated conductive microwire networks. Acs Applied Materials & Interfaces, 4, 3759–3764. doi:10.1021/Am3009746
  • Huang, C. Y., Trask, R. S., & Bond, I. P. (2010). Characterization and analysis of carbon fibre-reinforced polymer composite laminates with embedded circular vasculature. Journal of The Royal Society Interface, 7, 1229–1241. doi:10.1098/rsif.2009.0534
  • Huang, G. C., Lee, J. K., & Kessler, M. R. (2011). Evaluation of norbornene-based adhesives to amine-cured epoxy for self-healing applications. Macromolecular Materials and Engineering, 296, 965–972. doi:10.1002/mame.201100016
  • Huang, J.-H., Kim, J., Agrawal, N., Sudarsan, A. P., Maxim, J. E., Jayaraman, A., & Ugaz, V. M. (2009). Rapid fabrication of bio-inspired 3D microfluidic vascular networks. Advanced Materials, 21, 3567–3571. doi:10.1002/adma.200900584
  • Jacobsen, A., Kolodziejska, J., Doty, R., Fink, K., Zhou, C., Roper, C., & Carter, W. (2010). Interconnected self-propagating photopolymer waveguides: An alternative to stereolithography for rapid formation of lattice-based open-cellular materials. In Twenty First Annual International Solid Freeform Fabrication Symposium-An Additive Manufacturing Conference. Austin, TX.
  • Jacobsen, A. J., Barvosa-Carter, W., & Nutt, S. (2007). Micro-scale truss structures formed from self-propagating photopolymer waveguides. Advanced Materials, 19, 3892–3896. doi:10.1002/adma.200700797
  • Jin, H., Miller, G. M., Pety, S. J., Griffin, A. S., Stradley, D. S., Roach, D., … White, S. R. (2013). Fracture behavior of a self-healing, toughened epoxy adhesive. International Journal of Adhesion and Adhesives, 44, 157–165. doi:10.1016/j.ijadhadh.2013.02.015
  • Jin, H. H., Mangun, C. L., Griffin, A. S., Moore, J. S., Sottos, N. R., & White, S. R. (2014). Thermally stable autonomic healing in epoxy using a dual-microcapsule system. Advanced Materials, 26, 282–287. doi:10.1002/adma.201303179
  • Jones, A. R., Blaiszik, B. J., White, S. R., & Sottos, N. R. (2013). Full recovery of fiber/matrix interfacial bond strength using a microencapsulated solvent-based healing system. Composites Science and Technology, 79, 1–7. doi:10.1016/j.compscitech.2013.02.007
  • Jones, A. R., Cintora, A., White, S. R., & Sottos, N. R. (2014). Autonomic healing of carbon fiber/epoxy interfaces. Acs Applied Materials & Interfaces, 6, 6033–6039. doi:10.1021/Am500536t
  • Jyothi, N. V., Prasanna, P. M., Sakarkar, S. N., Prabha, K. S., Ramaiah, P. S., & Srawan, G. Y. (2010). Microencapsulation techniques, factors influencing encapsulation efficiency. Journal of Microencapsulation, 27, 187–197. doi:10.3109/02652040903131301
  • Kalista, S. J. (2007). Self-healing of poly(ethylene-co-methacrylic acid) copolymers following projectile puncture. Mechanics of Advanced Materials and Structures, 14, 391–397. doi:10.1080/15376490701298819
  • Kalista, S. J., Pflug, J. R., & Varley, R. J. (2013). Effect of ionic content on ballistic self-healing in EMAA copolymers and ionomers. Polymer Chemistry, 4, 4910–4926. doi:10.1039/C3py00095 h
  • Kamphaus, J. M., Rule, J. D., Moore, J. S., Sottos, N. R., & White, S. R. (2008). A new self-healing epoxy with tungsten(VI) chloride catalyst. Journal of The Royal Society Interface, 5, 95–103. doi:10.1098/rsif.2007.1071
  • Kessler, M. R. (2007). Self-healing: A new paradigm in materials design. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 221, 479–495. doi:10.1243/09544100jaero172
  • Kessler, M. R., Sottos, N. R., & White, S. R. (2003). Self-healing structural composite materials. Composites Part A: Applied Science and Manufacturing, 34, 743–753. doi:10.1016/S1359-835x(03)00138-6
  • Kessler, M. R., & White, S. R. (2001). Self-activated healing of delamination damage in woven composites. Composites Part A: Applied Science and Manufacturing, 32, 683–699. doi:10.1016/S1359-835x(00)00149-4
  • Kirkby, E., de Oliveira, R., Michaud, V., & Månson, J. A. (2011). Impact localisation with FBG for a self-healing carbon fibre composite structure. Composite Structures, 94, 8–14. doi:10.1016/j.compstruct.2011.07.030
  • Knipprath, C., McCombe, G. P., Trask, R. S., & Bond, I. P. (2012). Predicting self-healing strength recovery using a multi-objective genetic algorithm. Composites Science and Technology, 72, 752–759. doi:10.1016/j.compscitech.2012.02.002
  • Kousourakis, A., & Mouritz, A. P. (2010). The effect of self-healing hollow fibres on the mechanical properties of polymer composites. Smart Materials & Structures, 19, Article ID: 085021. doi:10.1088/0964-1726/19/8/085021
  • Lanzara, G., Yoon, Y., Liu, H., Peng, S., & Lee, W. I. (2009). Carbon nanotube reservoirs for self-healing materials. Nanotechnology, 20, 335704. doi:10.1088/0957-4484/20/33/335704
  • Lark, R., Joseph, C., Isaacs, B., Gardner, D., & Jefferson, A. D. (2010). Experimental investigation of adhesive-based self-healing of cementitious materials. Magazine of Concrete Research, 62, 831–843. doi:10.1680/macr.2010.62.11.831
  • Lee, J. K., Hong, S. J., Liu, X., & Yoon, S. H. (2004). Characterization of dicyclopentadiene and 5-ethylidene-2-norbornene as self-healing agents for polymer composite and its microcapsules. Macromolecular Research, 12, 478–483.10.1007/BF03218430
  • Lee, S. M., Frauenheim, T., Elstner, M., Hwang, Y. G., & Lee, Y. H. (2000). Hydrogen storage in single-walled and multi-walled carbon nanotubes. Amorphous and Nanostructured Carbon, 593, 187–192.
  • Lee, S. M., & Lee, Y. H. (2000). Hydrogen storage in single-walled carbon nanotubes. Applied Physics Letters, 76, 2877–2879. Pii [S0003-6951(00)04520-4]. doi:10.1063/1.126503
  • Lewis, J. A., & Gratson, G. M. (2004). Direct writing in three dimensions. Materials Today, 7, 32–39. doi:10.1016/s1369-7021(04)00344-x
  • Li, H. Y., Wang, R. G., & Liu, W. B. (2012). Preparation and self-healing performance of epoxy composites with microcapsules and tungsten(VI) chloride catalyst. Journal of Reinforced Plastics and Composites, 31, 924–932. doi:10.1177/0731684412442990
  • Li, Q., Mishra, A. K., Kim, N. H., Kuila, T., Lau, K.-T., & Lee, J. H. (2013). Effects of processing conditions of poly(methylmethacrylate) encapsulated liquid curing agent on the properties of self-healing composites. Composites Part B: Engineering, 49, 6–15. doi:10.1016/j.compositesb.2013.01.011.
  • Li, Q., Siddaramaiah, Kim, N. H., Hui, D., & Lee, J. H. (2013). Effects of dual component microcapsules of resin and curing agent on the self-healing efficiency of epoxy. Composites Part B-Engineering, 55, 79–85. doi:10.1016/j.compositesb.2013.06.006
  • Li, V. C., Lim, Y. M., & Chan, Y. W. (1998). Feasibility study of a passive smart self-healing cementitious composite. Composites Part B-Engineering, 29, 819–827. doi:10.1016/S1359-8368(98)00034-1
  • Li, W. T., Jiang, Z. W., Yang, Z. H., Zhao, N., & Yuan, W. Z. (2013). Self-healing efficiency of cementitious materials containing microcapsules filled with healing adhesive: mechanical restoration and healing process monitored by water absorption. Plos One, 8, Article ID: e81616. doi:10.1371/journal.pone.0081616
  • Liao, L., Zhang, W., Xin, Y., Wang, H., Zhao, Y., & Li, W. (2011). Preparation and characterization of microcapsule containing epoxy resin and its self-healing performance of anticorrosion covering material. Chinese Science Bulletin, 56, 439–443. doi:10.1007/s11434-010-4133-0
  • Lim, D., Kamotani, Y., Cho, B., Mazumder, J., & Takayama, S. (2003). Fabrication of microfluidic mixers and artificial vasculatures using a high-brightness diode-pumped Nd: YAG laser direct write method. Lab on a Chip, 3, 318–323. doi:10.1039/B308452c
  • Liu, C., Fan, Y. Y., Liu, M., Cong, H. T., Cheng, H. M., & Dresselhaus, M. S. (1999). Hydrogen storage in single-walled carbon nanotubes at room temperature. Science, 286, 1127–1129. doi:10.1126/science.286.5442.1127
  • Liu, X., Lee, J. K., Yoon, S. H., & Kessler, M. R. (2006). Characterization of diene monomers as healing agents for autonomic damage repair. Journal of Applied Polymer Science, 101, 1266–1272. doi:10.1002/App.23245
  • Liu, X., Sheng, X., Lee, J. K., & Kessler, M. R. (2009). Synthesis and characterization of melamine-urea-formaldehyde microcapsules containing ENB-based self-healing agents. Macromolecular Materials and Engineering, 294, 389–395. doi:10.1002/mame.200900015
  • Liu, X. X., Zhang, H. R., Wang, J. X., Wang, Z., & Wang, S. C. (2012). Preparation of epoxy microcapsule based self-healing coatings and their behavior. Surface & Coatings Technology, 206, 4976–4980. doi:10.1016/j.surfcoat.2012.05.133
  • Lorente, S., & Bejan, A. (2009). Vascularized smart materials: Designed porous media for self-healing and self-cooling. Journal of Porous Media, 12(1), 1–18.10.1615/JPorMedia.v12.i1
  • McIlroy, D. A., Blaiszik, B. J., Caruso, M. M., White, S. R., Moore, J. S., & Sottos, N. R. (2010). Microencapsulation of a reactive liquid-phase amine for self-healing epoxy composites. Macromolecules, 43, 1855–1859. doi:10.1021/Ma902251n
  • Moll, J. L., Jin, H., Mangun, C. L., White, S. R., & Sottos, N. R. (2013). Self-sealing of mechanical damage in a fully cured structural composite. Composites Science and Technology, 79, 15–20. doi:10.1016/j.compscitech.2013.02.006
  • Moll, J. L., White, S. R., & Sottos, N. R. (2010). A self-sealing fiber-reinforced composite. Journal of Composite Materials, 44, 2573–2585. doi:10.1177/0021998309356605
  • Nademi, M., Mozaffari, A., & Farrokhabadi, A. (2011). A new self healing method in composite laminates using the hollow glass fiber. Composite Science and Technology, Pts 1 and 2, 471–472, 548–551. doi:10.4028/www.scientific.net/KEM.471-472.548
  • Neuser, S., & Michaud, V. (2013). Effect of aging on the performance of solvent-based self-healing materials. Polymer Chemistry, 4, 4993. doi:10.1039/c3py00064h
  • Neuser, S., & Michaud, V. (2014). Fatigue response of solvent-based self-healing smart materials. Experimental Mechanics, 54, 293–304. doi:10.1007/s11340-013-9787-5
  • Nguyen, A. T. T., & Orifici, A. C. (2012). Structural assessment of microvascular self-healing laminates using progressive damage finite element analysis. Composites Part A: Applied Science and Manufacturing, 43, 1886–1894. doi:10.1016/j.compositesa.2012.06.005
  • Norris, C., Bond, I., & Trask, R. (2012). Bioinspired vasculatures for self-healing fibre reinforced polymer composites. Proceedings of the ASME Conference on Smart Materials, Adaptive Structures and Intelligent Systems (Smasis 2011), 2, 599–606).
  • Norris, C. J., Bond, I. P., & Trask, R. S. (2011a). Interactions between propagating cracks and bioinspired self-healing vascules embedded in glass fibre reinforced composites. Composites Science and Technology, 71, 847–853. doi:10.1016/j.compscitech.2011.01.027
  • Norris, C. J., Bond, I. P., & Trask, R. S. (2011b). The role of embedded bioinspired vasculature on damage formation in self-healing carbon fibre reinforced composites. Composites Part A: Applied Science and Manufacturing, 42, 639–648. doi:10.1016/j.compositesa.2011.02.003
  • Norris, C. J., Bond, I. P., & Trask, R. S. (2013). Healing of low-velocity impact damage in vascularised composites. Composites Part A: Applied Science and Manufacturing, 44, 78–85. doi:10.1016/j.compositesa.2012.08.022
  • Norris, C. J., Meadway, G. J., O'Sullivan, M. J., Bond, I. P., & Trask, R. S. (2011). Self-healing fibre reinforced composites via a bioinspired vasculature. Advanced Functional Materials, 21, 3624–3633. doi:10.1002/adfm.201101100
  • Norris, C. J., White, J. A. P., McCombe, G., Chatterjee, P., Bond, I. P., & Trask, R. S. (2012). Autonomous stimulus triggered self-healing in smart structural composites. Smart Materials and Structures, 21, Article ID: 094027. doi:10.1088/0964-1726/21/9/094027
  • Olugebefola, S. C., Aragon, A. M., Hansen, C. J., Hamilton, A. R., Kozola, B. D., Wu, W., … Geubelle, P. H. (2010). Polymer microvascular network composites. Journal of Composite Materials, 44, 2587–2603. doi:10.1177/0021998310371537
  • Olugebefola, S. C., Hamilton, A. R., Fairfield, D. J., Sottos, N. R., & White, S. R. (2014). Structural reinforcement of microvascular networks using electrostatic layer-by-layer assembly with halloysite nanotubes. Soft Matter, 10, 544–548. doi:10.1039/C3sm52288a
  • Palleau, E., Reece, S., Desai, S. C., Smith, M. E., & Dickey, M. D. (2013). Self-healing stretchable wires for reconfigurable circuit wiring and 3D microfluidics. Advanced Materials, 25, 1589–1592. doi:10.1002/adma.201203921
  • Pang, J. W. C., & Bond, I. P. (2005a). ‘Bleeding composites’—Damage detection and self-repair using a biomimetic approach. Composites Part A: Applied Science and Manufacturing, 36, 183–188. doi:10.1016/j.compositesa.2004.06.016
  • Pang, J. W. C., & Bond, I. P. (2005b). A hollow fibre reinforced polymer composite encompassing self-healing and enhanced damage visibility. Composites Science and Technology, 65, 1791–1799. doi:10.1016/j.compscitech.2005.03.008
  • Patel, A. J., Sottos, N. R., Wetzel, E. D., & White, S. R. (2010). Autonomic healing of low-velocity impact damage in fiber-reinforced composites. Composites Part A: Applied Science and Manufacturing, 41, 360–368. doi:10.1016/j.compositesa.2009.11.002
  • Patrick, J. F., Hart, K. R., Krull, B. P., Diesendruck, C. E., Moore, J. S., White, S. R., & Sottos, N. R. (2014). Continuous self-healing life cycle in vascularized structural composites. Advanced Materials, 26, 4302–4308.
  • Patrick, J. F., Sottos, N. R., & White, S. R. (2012). Microvascular based self-healing polymeric foam. Polymer, 53, 4231–4240. doi:10.1016/j.polymer.2012.07.021
  • Raimondo, M., & Guadagno, L. (2013). Healing efficiency of epoxy-based materials for structural applications. Polymer Composites, 34, 1525–1532. doi:10.1002/pc.22539
  • Ranachowski, Z., Jozwiak-Niedzwiedzka, D., Brandt, A. M., & Debowski, T. (2012). Application of acoustic emission method to determine critical stress in fibre reinforced mortar beams. Archives of Acoustics, 37, 261–268. doi:10.2478/v10168-012-0034-3
  • Roper, C. S., Schubert, R. C., Maloney, K. J., Page, D., Ro, C. J., Yang, S. S., & Jacobsen, A. J. (2015). Scalable 3D bicontinuous fluid networks: Polymer heat exchangers toward artificial organs. Advanced Materials. doi:10.1002/adma.201403549
  • Rule, J. D., Brown, E. N., Sottos, N. R., White, S. R., & Moore, J. S. (2005). Wax-protected catalyst microspheres for efficient self-healing materials. Advanced Materials, 17, 205–208. doi:10.1002/adma.200400607
  • Rule, J. D., Sottos, N. R., & White, S. R. (2007). Effect of microcapsule size on the performance of self-healing polymers. Polymer, 48, 3520–3529. doi:10.1016/j.polymer.2007.04.008
  • Schaedler, T., Jacobsen, A., Torrents, A., Sorensen, A., Lian, J., Greer, J., … Carter, W. (2011). Ultralight metallic microlattices. Science, 334, 962–965.10.1126/science.1211649
  • Selver, E., Potluri, P., Soutis, C., & Hogg, P. (2015). Healing potential of hybrid materials for structural composites. Composite Structures, 122, 57–66.
  • Snoeck, D., Van Tittelboom, K., Steuperaert, S., Dubruel, P., & De Belie, N. (2014). Self-healing cementitious materials by the combination of microfibres and superabsorbent polymers. Journal of Intelligent Material Systems and Structures, 25, 13–24. doi:10.1177/1045389x12438623
  • Su, J.-F., Qiu, J., & Schlangen, E. (2013). Stability investigation of self-healing microcapsules containing rejuvenator for bitumen. Polymer Degradation and Stability, 98, 1205–1215. doi:10.1016/j.polymdegradstab.2013.03.008
  • Swait, T. J., Rauf, A., Grainger, R., Bailey, P. B. S., Lafferty, A. D., Fleet, E. J., … Hayes, S. A. (2012). Smart composite materials for self-sensing and self-healing. Plastics Rubber and Composites, 41, 215–224. doi:10.1179/1743289811y.0000000039
  • Therriault, D., White, S. R., & Lewis, J. A. (2003). Chaotic mixing in three-dimensional microvascular networks fabricated by direct-write assembly. Nature Materials, 2, 265–271. doi:10.1038/nmat863.
  • Thostenson, E. T., & Chou, T. W. (2006). Carbon nanotube networks: Sensing of distributed strain and damage for life prediction and self healing. Advanced Materials, 18, 2837–2841. doi:10.1002/adma.200600977
  • Toohey, K. S., Hansen, C. J., Lewis, J. A., White, S. R., & Sottos, N. R. (2009). Delivery of two-part self-healing chemistry via microvascular networks. Advanced Functional Materials, 19, 1399–1405. doi:10.1002/adfm.200801824
  • Toohey, K. S., Sottos, N. R., Lewis, J. A., Moore, J. S., & White, S. R. (2007). Self-healing materials with microvascular networks. Nature Materials, 6, 581–585. doi:10.1038/nmat1934
  • Toohey, K. S., Sottos, N. R., & White, S. R. (2009). Characterization of microvascular-based self-healing coatings. Experimental Mechanics, 49, 707–717. doi:10.1007/s11340-008-9176-7
  • Trask, R. S., & Bond, I. P. (2006). Biomimetic self-healing of advanced composite structures using hollow glass fibres. Smart Materials and Structures, 15, 704–710. doi:10.1088/0964-1726/15/3/005
  • Trask, R. S., Norris, C. J., & Bond, I. P. (2014). Stimuli-triggered self-healing functionality in advanced fibre-reinforced composites. Journal of Intelligent Material Systems and Structures, 25, 87–97. doi:10.1177/1045389x13505006
  • Trask, R. S., Williams, H. R., & Bond, I. P. (2007). Self-healing polymer composites: Mimicking nature to enhance performance. Bioinspiration & Biomimetics, 2, P1–P9. doi:10.1088/1748-3182/2/1/P01
  • Trask, R. S., Williams, G. J., & Bond, I. P. (2007). Bioinspired self-healing of advanced composite structures using hollow glass fibres. Journal of The Royal Society Interface, 4, 363–371. doi:10.1098/rsif.2006.0194
  • Tripathi, M., Rahamtullah, K. D., Rajagopal, C., & Roy, P. K. (2014). Influence of microcapsule shell material on the mechanical behavior of epoxy composites for self-healing applications. Journal of Applied Polymer Science, 131, Article ID: 40572. doi:10.1002/App.40572
  • Uchijo, C., Kuroda, Y., Kemmochi, K., & Bao, L. M. (2011). Research on FRP composite structures with self-healing function—Effect of filler on FRP interlaminar fracture toughness. Advanced Textile Materials, Pts 1–3, 31–34. doi:10.4028/www.scientific.net/AMR.332-334.31
  • Van Tittelboom, K., & De Belie, N. (2013). Self-healing in cementitious materials—A review. Materials, 6, 2182–2217. doi:10.3390/Ma6062182
  • White, S. R., Moore, J. S., Sottos, N. R., Krull, B. P., Santa Cruz, W. A., & Gergely, R. C. R. (2014). Restoration of large damage volumes in polymers. Science, 344, 620–623.
  • White, S. R., Sottos, N. R., Geubelle, P. H., Moore, J. S., Kessler, M. R., Sriram, S. R., … Viswanathan, S. (2001). Autonomic healing of polymer composites. Nature, 409, 794–797. doi:10.1038/35057232
  • Wilson, G. O., Moore, J. S., White, S. R., Sottos, N. R., & Andersson, H. M. (2008). Autonomic healing of epoxy vinyl esters via ring opening metathesis polymerization. Advanced Functional Materials, 18, 44–52. doi:10.1002/adfm.200700419
  • Williams, G., Trask, R., & Bond, I. (2007). A self-healing carbon fibre reinforced polymer for aerospace applications. Composites Part A: Applied Science and Manufacturing, 38, 1525–1532. doi:10.1016/j.compositesa.2007.01.013
  • Williams, G. J., Bond, I. P., & Trask, R. S. (2009). Compression after impact assessment of self-healing CFRP. Composites Part A: Applied Science and Manufacturing, 40, 1399–1406. doi:10.1016/j.compositesa.2008.05.021
  • Williams, H. R., Trask, R. S., & Bond, I. P. (2007). Self-healing composite sandwich structures. Smart Materials & Structures, 16, 1198–1207. doi:10.1088/0964-1726/16/4/031
  • Williams, H. R., Trask, R. S., & Bond, I. P. (2008). Self-healing sandwich panels: Restoration of compressive strength after impact. Composites Science and Technology, 68, 3171–3177. doi:10.1016/j.compscitech.2008.07.016
  • Williams, H. R., Trask, R. S., & Bond, I. P. (2011). A probabilistic approach for design and certification of self-healing advanced composite structures. Proceedings of the Institution of Mechanical Engineers Part O-Journal of Risk and Reliability, 225, 435–449. doi:10.1177/1748006x10397847
  • Wool, R. P. (2008). Self-healing materials: A review. Soft Matter, 4, 400. doi:10.1039/b711716g
  • Wu, D. Y., Meure, S., & Solomon, D. (2008). Self-healing polymeric materials: A review of recent developments. Progress in Polymer Science, 33, 479–522. doi:10.1016/j.progpolymsci.2008.02.001
  • Wu, W., DeConinck, A., & Lewis, J. A. (2011). Omnidirectional printing of 3D microvascular networks. Advanced Materials, 23, H178–H183. doi:10.1002/adma.201004625
  • Wu, W., Hansen, C. J., Aragón, A. M., Geubelle, P. H., White, S. R., & Lewis, J. A. (2010). Direct-write assembly of biomimetic microvascular networks for efficient fluid transport. Soft Matter, 6, 739–742. doi:10.1039/B918436h
  • Wu, X. F., Rahman, A., Zhou, Z. P., Pelot, D. D., Sinha-Ray, S., Chen, B., … Yarin, .A. L. (2013). Electrospinning core-shell nanofibers for interfacial toughening and self-healing of carbon-fiber/epoxy composites. Journal of Applied Polymer Science, 129, 1383–1393. doi:10.1002/App.38838
  • Xing, F., Ni, Z., Han, N. X., Dong, B. Q., Du, X. X., Huang, Z., & Zhang, M. (2008). Self-healing mechanism of a novel cementitious composite using microcapsules, Advances in Concrete Structural Durability, Proceedings of ICDCS 2008, 1, 2, 195–204.
  • Yang, Y., & Urban, M. W. (2013). Self-healing polymeric materials. Chemical Society Reviews, 42, 7446–7467. doi:10.1039/c3cs60109a
  • Ye, X. J., Zhang, J. L., Zhu, Y., Rong, M. Z., Zhang, M. Q., Song, Y. X., & Zhang, H. X. (2014). Ultrafast self-healing of polymer toward strength restoration. ACS Applied Materials & Interfaces, 6, 3661–3670. doi:10.1021/Am405989b
  • Yin, T., Rong, M. Z., & Zhang, M. Q. (2008). Self-healing of cracks in epoxy composites. Multi-Functional Materials and Structures, Pts 1 and 2, 47–50, 282–285.
  • Yin, T., Rong, M. Z., Zhang, M. Q., & Yang, G. C. (2007). Self-healing epoxy composites—Preparation and effect of the healant consisting of microencapsulated epoxy and latent curing agent. Composites Science and Technology, 67, 201–212. doi:10.1016/j.compscitech.2006.07.028
  • Yun, J.-H., Chang-Soo, H., Kim, J., Song, J.-W., Shin, D.-H., & Park, Y.-G. (2014). Fabrication of carbon nanotube sensor device by inkjet printing. In Proceedings of the 3rd IEEE International Conference on Nano/Micro Engineered and Molecular Systems (January 6–9, 2008). Sanya.
  • Yuan, L., Liang, G. Z., Xie, J. Q., Li, L., & Guo, J. (2006). Preparation and characterization of poly(urea-formaldehyde) microcapsules filled with epoxy resins. Polymer, 47, 5338–5349. doi:10.1016/j.polymer.2006.05.051
  • Yuan, Y. C. (2008). Self healing in polymers and polymer composites. Concepts, realization and outlook: A review. Express Polymer Letters, 2, 238–250. doi:10.3144/expresspolymlett.2008.29
  • Yuan, Y. C., Rong, M. Z., & Zhang, M. Q. (2008). Preparation and characterization of microencapsulated polythiol. Polymer, 49, 2531–2541. doi:10.1016/j.polymer.2008.03.044
  • Yuan, Y. C., Rong, M. Z., Zhang, M. Q., Chen, J., Yang, G. C., & Li, X. M. (2008). Self-healing polymeric materials using epoxy/mercaptan as the healant. Macromolecules, 41, 5197–5202. doi:10.1021/Ma800028d
  • Yuan, Y. C., Rong, M. Z., Zhang, M. Q., Yang, G. C., & Zhao, J. Q. (2011). Self-healing of fatigue crack in epoxy materials with epoxy/mercaptan system. Express Polymer Letters, 5, 47–59. doi:10.3144/expresspolymlett.2011.6
  • Zhang, H., Wang, P. F., & Yang, J. L. (2014). Self-healing epoxy via epoxy-amine chemistry in dual hollow glass bubbles. Composites Science and Technology, 94, 23–29. doi:10.1016/j.compscitech.2014.01.009
  • Zhang, H., & Yang, J. L. (2013). Etched glass bubbles as robust micro-containers for self-healing materials. Journal of Materials Chemistry A, 1, 12715–12720. doi:10.1039/C3ta13227g
  • Zhang, H., & Yang, J. L. (2014a). Development of self-healing polymers via amine-epoxy chemistry: I. Properties of healing agent carriers and the modelling of a two-part self-healing system. Smart Materials and Structures, 23, Article ID: 065003. doi:10.1088/0964-1726/23/6/065003
  • Zhang, H., & Yang, J. L. (2014b). Development of self-healing polymers via amine-epoxy chemistry: II. Systematic evaluation of self-healing performance. Smart Materials and Structures, 23, Article ID: 065004. doi:10.1088/0964-1726/23/6/065004
  • Zhang, L., Dong, X. P., & Chen, H. (2011). Study on the effects of the self-healing microcapsules on the tensile properties of polymer composite. Materials and Manufacturing, Pts 1 and 2, 299–300, 460–465. doi:10.4028/www.scientific.net/AMR.299-300.460
  • Zhang, M., & Rong, M. (2012). Design and synthesis of self-healing polymers. Science China Chemistry, 55, 648–676. doi:10.1007/s11426-012-4511-3.
  • Zhang, Z. C., Chu, H. T., Wang, K. W., Liu, Y. J., & Leng, J. S. (2013). Multifunctional carbon nano-paper composite. Fourth International Conference on Smart Materials and Nanotechnology in Engineering, 8793, Article ID: 87930x. doi:10.1117/12.2028312
  • Zheng, C., & Huang, Z. (2015). Microgel reinforced composite hydrogels with pH-responsive, self-healing properties. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 468, 327–332. doi:10.1016/j.colsurfa.2014.12.060.
  • Zhou, F., Wang, C. H., & Mouritz, A. P. (2010). Computational analysis of the structural integrity of self-healing composites. Pricm 7, Pts 1–3, 654–656, 2576–2578. doi:10.4028/www.scientific.net/MSF.654-656.2576
  • Zuev, V. V., Lee, J., Kostromin, S. V., Bronnikov, S. V., & Bhattacharyya, D. (2013). Statistical analysis of the self-healing epoxy-loaded microcapsules across their synthesis. Materials Letters, 94, 79–82. doi:10.1016/j.matlet.2012.12.026