4,408
Views
9
CrossRef citations to date
0
Altmetric
Research Article

Thermal effect of mass concrete structures in the tropics: Experimental, modelling and parametric studies

, ORCID Icon & | (Reviewing Editor)
Article: 1278297 | Received 09 Jun 2016, Accepted 29 Dec 2016, Published online: 19 Jan 2017

References

  • ACI Committee 207. (2005a). Guide to mass concrete, ACI 207.1R-05. Farmington Hills, MI: American Concrete Institute.
  • ACI Committee 207. (2005b). Report on thermal and volume change effects on cracking of mass concrete, 207.2R-07. Farmington Hills, MI: American Concrete Institute.
  • ACI Committee 318. (2005). Building code requirements for structural concrete (ACI 318–05) and commentary (318R–05). Farmington Hills, MI: American Concrete Institute.
  • Atrushi, D. S. (2003). Tensile and compressive creep of early age concrete: Testing and modelling. Trondheim: Department of Civil Engineering, The Norwegian University of Science and Technology. URN:NBN:no-3377.
  • Ayotte, É., Massicote, B., Houde, J., & Gocevski, V. (1997). Modelling the thermal stresses at early ages in a concrete monolith. ACI Materials Journal, 94, 577–587.
  • Ballim, Y. (2004). A numerical model and associated calorimeter for predicting temperature profiles in mass concrete. Cement and Concrete Composites, 26, 695–703. doi:10.1016/S0958-9465(03)00093-3
  • Bartojay, K. (2012). Thermal properties of reinforced structural mass concrete. Dam Safety Technology Development Program, Bureau of Reclamation, OMB No. 0704-0188. Denver, CO: U.S. Department of the Interior.
  • Bernard, O., Ulm, F., & Lemarchand, E. (2003). A multiscale micromechanics-hydration model for the early-age elastic properties of cement-based materials. Cement and Concrete Research, 1293–1309. doi:10.1016/S0008-8846(03)00039-5
  • Bobko, P. C., Edwards, J. A., Seracino, R., & Zia, P. (2015). Thermal cracking of mass concrete bridge footings in coastal environments. Journal of Performance of Constructed Facilities, 29, 0401–4171. doi:10.1061/(ASCE)CF.1943-5509.0000664
  • Cao, Y., Zavaterri, P., Youngblood, J., Moon, R., & Weiss, J. (2014). The influence of cellulose nano crystal additions on the performance of cement paste. Cement & Concrete Composites, 56, 73–83. doi:10.1016/j.cemconcomp.2014.11.008
  • Cervera, M., Faria, R., Oliver, J., & Prato, T. (2002). Numerical modelling of concrete curing, regarding hydration and temperature phenomena. Computers & Structures, 1511–1521. doi:10.1016/S0045-7949(02)00104-9
  • Chini, A. R., & Parham, A. (2005). Adiabatic temperature rise of mass concrete in Florida (final report). GainesVille, FL: University of Florida.
  • de Borst, R., & van den Boogaard, A. H. (1994). Finite‐element modeling of deformation and cracking in early‐age concrete. Journal of Engineering Mechanics, 120, 2519–2534.10.1061/(ASCE)0733-9399(1994)120:12(2519)
  • De Freitas, T., Cuong, J., Faria, R., & Azenha, M. (2013). Modelling of cement hydration in concrete structures with hybrid finite elements. Finite Elements in Analysis and Design, 77, 16–30. doi:10.1016/j.finel.2013.07.008.
  • De Schutter, G. (2002). Finite element simulation of thermal cracking in massive hardening concrete elements using degree of hydration based material laws. Computers & Structures, 80, 2035–2042.10.1016/S0045-7949(02)00270-5
  • De Schutter, G., Yuan, Y., Liu, X., & Jiang, W. (2014). Degree of hydration-based creep modeling of concrete with blended binders: from concept to real applications. Journal of Sustainable Cement-Based Materials, 1–14, doi:10.1080/21650373.2014.928808
  • Do, A. T., Lawrence, M. A., Tia, M., & Bergin, M. J. (2015). Effects of thermal conductivity of soil on temperature development and cracking in mass concrete footings. Journal of Testing and Evaluation, 43, 1078–1090. doi:https://doi.org/10.1520/JTE20140026
  • Do, T., Lawrence, A., Tia, M., & Bergin, M. (2014). Determination of required insulation for preventing early-age cracking in mass concrete footings. Transportation Research Record: Journal of the Transportation Research Board, 2441, 91–97. doi:10.3141/2441-12
  • Edwards, A. J. (2013). Early age thermal cracking of mass concrete footings on bridges in coastal environments (Unpublished MSc Graduate Thesis). North Carolina State University, Raleigh.
  • Flaga, K. (2011). Shrinkage stresses and surface reinforcement in concrete structures. Monography 391. Krakow: Cracow Technical University.
  • Folliard, K. J., Juenger, M., Schindler, A., Riding, K., Poole, J., Kallivokas, L. F., … Meadows, J. L. (2008). Prediction model for concrete behavior - final report (No. Report No. FHWA/TX-08/0-4563-1). Austin, TX: Texas Department of Transportation and the Federal Highway Administration.
  • Gajda, J. (2007). Mass concrete for buildings and bridges. Skokie, IL: Portland Cement Association.
  • Gajda, J., & Vangeem, M. (2002). Controlling temperatures in mass concrete. Concrete International, 24, 59–62.
  • Gawin, D., Pesavento, F., & Schrefler, B. (2006a). Hygro-thermo-chemo-mechanical modelling of concrete at early ages and beyond. Part II: shrinkage and creep of concrete. International Journal for Numerical Methods in Engineering, 332–363. doi:10.1002/nme.1636
  • Gawin, D., Pesavento, F., & Schrefler, B. (2006b). Hygro-thermo-chemo-mechanical modelling of concrete at early ages and beyond. Part I: hydration and hygro-thermal phenomena. International Journal for Numerical Methods in Engineering, 299–331. doi:10.1002/nme.1615
  • Ilc, A., Turk, G., Kavčič, F., & Trtnik, G. (2009). New numerical procedure for the prediction of temperature development in early age concrete structures. Automation in Construction, 18, 849–855. doi:10.1016/j.autcon.2009.03.009.Manuscript
  • Ishikawa, M. (1991). Thermal stress analysis of a concrete dam. Computers & Structures, 40, 347–352.10.1016/0045-7949(91)90360-X
  • Jaafar, M. S. (2007). Development of finite element computer code for thermal analysis of roller compacted concrete dams. Advances in Engineering Software, 38, 886–895.10.1016/j.advengsoft.2006.08.040
  • Khan, A. A., Cook, W. D., & Mitchell, D. (1998). Thermal properties and transient thermal analysis of structural members during hydration. ACI Materials Journal, 95, 293–300.
  • Kim, S. G. (2010). Effect of heat generation from cement hydration on mass concrete placement (No. Paper 11675) (Graduate Theses and Dissertations). Ames, IA: Graduate College Digital Repository.
  • Kishi, T., & Maekawa, K. (1995). Multi-component model for hydration heating of Portland cement. Translation from Proceedings of JSCE, 29, 97–109.
  • Klemczak, A. B. (2014). Modeling thermal-shrinkage stresses in early age massive concrete structures – Comparative study of basic models. Archives of Civil and Mechanical Engineering, 83, 1–13. doi:10.1016/j.acme.2014.01.002
  • Lachemi, M., & Aïtcin, P.-C. (1997). Influence of ambient and fresh concrete temperatures on the maximum temperature and thermal gradient in a high performance concrete structure. ACI Materials Journal, 94, 102–110.
  • Lawrence, A. M. (2009). A finite element model for the prediction of thermal stresses in mass concrete (Unpublished Ph.D. Dissertation). Gainesville, FL: University of FLorida.
  • Lawrence, A. M., Tia, M., Ferraro, C., & Bergin, M. (2012). Effect of early age strength on cracking in mass concrete containing different supplementary cementitious materials: Experimental and finite-element investigation. Journal of Materials in Civil Engineering, 24, 362–372.10.1061/(ASCE)MT.1943-5533.0000389
  • Lee, Y., & Kim, J. (2009). Numerical analysis of the early age behavior of concrete structures with a hydration based microplane model. Computers & Structures, 1085–1101. doi:10.1016/j.compstruc.2009.05.008
  • Lin, Y., & Chen, H.-L. (2015). Thermal analysis and adiabatic calorimetry for early-age concrete members: Part 2. Evaluation of thermally induced stresses. Journal of Thermal Analysis and Calorimetry, 124, 227–239. doi:10.1007/s10973-015-5131-x
  • Loïc, D. (2003). Delayed ettringite formation in massive concrete structures: Summary of studies conducted on deteriorated bridges. Bulletin Des Laboratories Des Ponts et Chaussées, 4473, 91–111.
  • Mehta, P. K., & Monteiro, P. J. M. (2013). Concrete: Microstructure, properties and materials (4th ed., pp. 259–264). New York, NY: The McGraw-Hill Education.
  • Milestone, N. B., & Rogers, D. E. (1981). Use of an isothermal calorimeter for determining heats of hydration at early ages. World Cement Technology, 12, 374–380.
  • Muhammad, A. N. (2009). Simulation of the thermal stress in mass concrete using a thermal stress measuring device. Cement and Concrete Research, 139, 154–164.
  • Noorzaei, J., Bayagoob, K. H., Thanoon, W. A., & Jaafar, M. S. (2006). Thermal and stress analysis of Kinta RCC dam. Engineering Structures, 28, 1795–1802.10.1016/j.engstruct.2006.03.027
  • Pofale, A. D., Tayade, K. C., & Deshpande, N. V. (2013). Calorimetric studies on heat evolution and temperature rise due to hydration of cementitious materials in concrete using semi-adiabatic calorimeter. Special Issue for National Conference on Recent Advances in Technology and Management for Integrated Growth 2013 (RATMIG 2013) (Vol. 2013, pp. 1–7). Retrieved from www.ijaiem.org
  • Prasanna, W. G., & Subhashini, P. A. (2010). Cracking due to temperature gradient in concrete. International Conference on Sustainable Built Environment (ICSBE-2010) on 13th to 14th December 2010 (pp. 496–504). Kandy.
  • Radovanovic, S. (1998). Thermal and structural finite element analysis of early age mass concrete structures. Winnipeg, Manitoba: University of Manitoba.
  • Raphael, J. M. (1984). Tensile strength of concrete. ACI Journal, 81, 158–165.
  • Riding, K. A., Poole, J. L., Folliard, K. J., Juenger, M. C., & Schinder, A. K. (2012). Modelling hydration of cementitious systems. ACI Materials Journal, 109, 225–234. Retrieved from http://hdl.handle.net/2009/15459
  • Suzuki, Y., Tsuji, Y., Maekawa, K., & Okamura, H. (1990). Quantification of hydration-heat generation process of cement in concrete. Japan Society of Civil Engineers (JSCE), 16, 111–124.
  • Tanabe, T., Kawasumi, M., & Yamashita, Y. (1986). Thermal stress analysis of massive concrete. Seminar Proceedings For Finite Element Analysis of Reinforced Concrete Structures. Tokyo, Japan on 21-24 May 1986. New York, NY: ASCE.
  • Tang, K., Millard, S., & Beattie, G. (2015). Early-age heat development in GGBS concrete structures. Structures and Buildings, 168, 541–553. doi:10.1680/stbu.14.00089
  • Tatro, S., & Schrader, E. (1992). Thermal analysis for RCC-a practical approach. In K.D. Hansen, & F.G. McLean (Eds.), Roller compacted concrete III (pp. 389–406). New York, NY: American Society of Civil Engineers.
  • Tia, M., Lawrence, A., Ferraro, C., Do, T. A., & Chen, Y. (2013). Pilot project for maximum heat of mass concrete (Report number: 00093793). Gainesville, FL: The Florida Department of Transportation.
  • Tim, C. T. (2014). Challenges and opportunities in tropical concreting. 2nd International Conference on Sustainable Civil Engineering Structures and Construction Materials 2014 (SCESCM 2014) (pp. 348–355). doi:10.1016/j.proeng.2014.12.193
  • Truman, K. Z., Petruska, D., Ferhi, A., & Fehl, B. (1991). Nonlinear, incremental analysis of mass‐concrete lock monolith. Journal of Structural Engineering, 117, 1834–1851.10.1061/(ASCE)0733-9445(1991)117:6(1834)
  • Ulm, F., & Coussy, O. (1995). Modeling of Thermochemomechanical Couplings of Concrete at Early Ages. Journal of Engineering Mechanics, 121, 785–794. doi:10.1061/(ASCE)0733-9399(1995)121:7(785))
  • van Breugel, K. (1991). Simulation model for development of properties of early-age concrete. In L. Taerwe & H. Lambotte (Eds.), Quality Control of Concrete Structures – Proceedings of the Second International RILEM/CEB Symposium on June 1991 (pp. 139–151). Ghent, RILEM Proceedings 14: E & FN Spon: London.
  • Viviani, M. (2005). Monitoring and modeling of construction materials during hardening (Doctoral Thesis). Lausanne: Swiss Federal Institute of Technology.
  • Waller, V. D’Aloı̈a, L., Cussigh, F., & Lecrux, S. (2004). Using the maturity method in concrete cracking control at early ages. Cement and Concrete Composites, 589–599. doi:10.1016/S0958-9465(03)00080-5
  • Wang, K., Ge, Z., Grove, J., Ruiz, J. M., & Rasmussen, R. (2006). Developing a simple and rapid test for monitoring the heat evolution of concrete mixtures for both laboratory and field applications. Center for Transportation Research and Education, Iowa State University (Report No. FHWA DTF61-01-00042). Washington, DC: National Concrete Pavement Technology Center.
  • Yuan, Y., & Wan, Z. L. (2002). Prediction of cracking within early-age concrete due to thermal, drying and creep behavior. Cement and Concrete Research, 32, 1053–1059. doi:10.1016/S0008-8846(02)00743-3
  • Zhai, X., Wang, Y., & Wang, H. (2015). Thermal stress analysis of concrete wall of LNG tank during construction period. Materials and Structures. doi:10.1617/s11527-015-0656-9