1,771
Views
25
CrossRef citations to date
0
Altmetric
Research Article

Hydration mechanism and strength properties of recycled aggregate concrete made using ceramic blended cement

ORCID Icon, & | (Reviewing Editor)
Article: 1282667 | Received 19 Oct 2016, Accepted 12 Jan 2017, Published online: 30 Jan 2017

References

  • Achtemichuk, S., Hubbard, J., Sluce, R., & Shehata, M. H. (2009). The utilization of recycled concrete aggregate to produce controlled low-strength materials without using Portland cement. Cement and Concrete Composites, 31, 564–569.10.1016/j.cemconcomp.2008.12.011
  • Aruntaş, H. Y., Gürü, M., Dayı, M., & Tekin, İ. (2010). Utilization of waste marble dust as an additive in cement production. Materials and Design, 31, 4039–4042.10.1016/j.matdes.2010.03.036
  • ASTM C618. (2005). Standard Specification for coal fly ash and raw or calcined natural pozzolan for use in concrete.
  • ASTM C685/C685M–14. (2014). Standard specification for concrete made by volumetric batching and continuous mixing.. West Conshohocken, PA: Author.
  • Awoyera, P. O., Adekeye, A. W., & Babalola, O. E. (2015). Influence of electric arc furnace (EAF) slag aggregate sizes on the workability and durability of concrete. International Journal of Engineering and Technology, 7, 1049–1056.
  • Awoyera, P. O., Akinmusuru, J. O., & Ndambuki, J. M. (2016). Green concrete production with ceramic wastes and laterite. Construction and Building Materials, 117, 29–36.10.1016/j.conbuildmat.2016.04.108
  • Awoyera, P. O., Akinmusuru, J. O., Ndambuki, J. M. (in press). The performance of ceramic tile wastes as substitute for natural aggregates in laterised concrete. Key Engineering Materials.
  • Babalola, O. E., & Awoyera, P. O. (2016). Suitability of Cordia millenii ash blended cement in concrete production. International Journal of Engineering Research in Africa, 22, 59–67.10.4028/www.scientific.net/JERA.22
  • Bignozzi, M. C., & Bonduà, S. (2011). Alternative blended cement with ceramic residues: Corrosion resistance investigation on reinforced mortar. Cement and Concrete Research, 41, 947–954.10.1016/j.cemconres.2011.05.001
  • British Standard Institute. (1989a). BS 12, specification for ordinary and rapid-hardening Portland cement. London: Author.
  • British Standard Institute. (1989b). BS 812: Part 103-2, Testing aggregates. Method for determination of particle size distribution. Sedimentation test. London: Author.
  • British Standard Institute. (1990a). BS 1377: Part 1, Methods of test for soils for civil engineering purposes. General requirements and sample preparation. Author.
  • British Standard Institute. (1990b). BS 812: Part 110, Methods for determination of aggregate crushing value. Author.
  • British Standard Institute. (1990c). BS 812: Part 112, Methods for determination of aggregate impact value. London: Author.
  • Casuccio, M., Torrijos, M. C., Giaccio, G., & Zerbino, R. (2008). Failure mechanism of recycled aggregate concrete. Construction and Building Materials, 22, 1500–1506.10.1016/j.conbuildmat.2007.03.032
  • Ceia, F., Raposo, J., Guerra, M., Júlio, E., & de Brito, J. (2016). Shear strength of recycled aggregate concrete to natural aggregate concrete interfaces. Construction and Building Materials, 109, 139–145.10.1016/j.conbuildmat.2016.02.002
  • Chakradhara Rao, M., Bhattacharyya, S. K., & Barai, S. V. (2011). Behaviour of recycled aggregate concrete under drop weight impact load. Construction and Building Materials, 25, 69–80.10.1016/j.conbuildmat.2010.06.055
  • Cheng, Y., Huang, F., Liu, R., Hou, J., & Li, G. (2016). Test research on effects of waste ceramic polishing powder on the permeability resistance of concrete. Materials and Structures, 49, 729–738.10.1617/s11527-015-0533-6
  • de Brito, J., Pereira, A. S., & Correia, J. R. (2005). Mechanical behaviour of non-structural concrete made with recycled ceramic aggregates. Cement and Concrete Composites, 27, 429–433.10.1016/j.cemconcomp.2004.07.005
  • Evangelista, L., & de Brito, J. (2007). Mechanical behaviour of concrete made with fine recycled concrete aggregates. Cement and Concrete Composites, 29, 397–401.10.1016/j.cemconcomp.2006.12.004
  • García-González, J., Rodríguez-Robles, D., Juan-Valdés, A., Morán-del Pozo, J. M., & Guerra-Romero, M. I. (2014). Ceramic ware waste as coarse aggregate for structural concrete production. Environmental Technology, 36, 1–10.
  • González-Fonteboa, B., Martínez-Abella, F., Carro López, D., & Seara-Paz, S. (2011). Stress-strain relationship in axial compression for concrete using recycled saturated coarse aggregate. Construction and Building Materials, 25, 2335–2342.
  • Halicka, A., Ogrodnik, P., & Zegardlo, B. (2013). Using ceramic sanitary ware waste as concrete aggregate. Construction and Building Materials, 48, 295–305.10.1016/j.conbuildmat.2013.06.063
  • Ishikura, T., & Fujii, S. (2008). Concrete waste recycling process for high quality aggregate. La Grange Park, IL: American Nuclear Society.
  • Jumate, E., & Manea, D. L. (2012). Application of X-ray diffraction (XRD) and scanning electron microscopy (SEM) methods to the Portland cement hydration processes, Journal of Applied Engineering Science, 2 35–42.
  • Kulovaná, T., & Pavlík, Z. (2016). Characterization of composite materials based on cement-ceramic powder blended binder. AIP Conference Proceedings, 1738, 280004.10.1063/1.4952064
  • Llamas, L. B., Juan, A., Moran, J. M., & Guerra, I. (2007). Eco-efficient concretes: Impact of use of white ceramic powder on the mechanical properties of concrete. Biosystems Engineering, 96, 559–564.
  • Lucas, J., de Brito, J., Veiga, R. C., & Farinha, C. (2016). The effect of using sanitary ware as aggregates on rendering mortars’ performance. Materials & Design, 91, 155–164.10.1016/j.matdes.2015.11.086
  • Margarido, F. (2014). Environmental impact and life cycle evaluation of materials. In M. Clara Gonçalves & F. Margarido (Eds.), Material for construction and civil engineering (pp. 799–835). Switzerland: Springer International Publishing.
  • Medina, C., Frías, M., & Sánchez de Rojas, M. I. (2012). Microstructure and properties of recycled concretes using ceramic sanitary ware industry waste as coarse aggregate. Construction and Building Materials, 31, 112–118.10.1016/j.conbuildmat.2011.12.075
  • Medina, C., Sánchez de Rojas, M. I., Thomas, C., Polanco, J. A., & Frías, M. (2016). Durability of recycled concrete made with recycled ceramic sanitary ware aggregate. Inter-indicator relationships. Construction and Building Materials, 105, 480–486.10.1016/j.conbuildmat.2015.12.176
  • Motz, H., & Geiseler, J. (2001). Products of steel slags an opportunity to save natural resources. Waste Management, 21, 285–293.10.1016/S0956-053X(00)00102-1
  • Nigeria Industrial Standards Center. (1989) NIS 444: Part II, conformity evaluation. Abuja: Author.
  • Nigeria Industrial Standards Center. (2003) NIS 444: Part 1, composition, specifications and conformity criteria for common cements. Abuja: Author.
  • Omary, S., Ghorbel, E., & Wardeh, G. (2016). Relationships between recycled concrete aggregates characteristics and recycled aggregates concretes properties. Construction and Building Materials, 108, 163–174.10.1016/j.conbuildmat.2016.01.042
  • Pacheco-Torgal, F., & Jalali, S. (2010). Reusing ceramic wastes in concrete. Construction and Building Materials, 24, 832–838.10.1016/j.conbuildmat.2009.10.023
  • Padmini, A. K., Ramamurthy, K., & Mathews, M. S. (2009). Influence of parent concrete on the properties of recycled aggregate concrete. Construction and Building Materials, 23, 829–836.10.1016/j.conbuildmat.2008.03.006
  • Pereira de Oliveira, L. A., Castro Gomes, J. P., Santos, P. (2007, January). Optimization on pozolanic reaction of ground waste glass incorporated in cement mortars. SB07 Sustainable Construction, Materials and Practices, Volume: Part 2, Covilhã.
  • Poon, C. S., & Chan, D. (2007). The use of recycled aggregate in concrete in Hong Kong. Resources, Conservation and Recycling, 50, 293–305.10.1016/j.resconrec.2006.06.005
  • Rahal, K. (2007). Mechanical properties of concrete with recycled coarse aggregate. Building and Environment, 42, 407–415.10.1016/j.buildenv.2005.07.033
  • Rao, A., Jha, K. N., & Misra, S. (2007). Use of aggregates from recycled construction and demolition waste in concrete. Resources, Conservation and Recycling, 50, 71–81.10.1016/j.resconrec.2006.05.010
  • Rodrígueza, C., Parrac, C., Casadob, G., Minanoa, I., Albaladejoa, F., Benitoa, F., & Sanchez, I. (2016). The incorporation of construction and demolition wastes as recycled mixed aggregates in non-structural concrete precast pieces. Journal of Cleaner Production, 127, 152–161. doi:10.1016/j.jclepro.2016.03.137
  • Sagoe-Crentsil, K. K., Brown, T., & Taylor, A. H. (2001). Performance of concrete made with commercially produced coarse recycled concrete aggregate. Cement and Concrete Research, 31, 707–712.10.1016/S0008-8846(00)00476-2
  • Sánchez de Rojas M. I., Marín, F., Rivera, J., Frías, M. (2006). Morphology and properties in blended cements with ceramic wastes as a pozzolanic material. Journal of the American Ceramic Society, 89, 3701–3705.10.1111/jace.2006.89.issue-12
  • Spain Ministry of the Presidency. (2008). Real Decreto 105/2008, de 1 de Febrero, por el quese Regula la Producción y Gestión de los Residuos de Construcción y Demolición [Royal Decree 105/2008, February 1, which regulates the production and management of construction and demolition waste], Madrid.
  • Thomas, C., Setién, J., & Polanco, J. A. (2016). Structural recycled aggregate concrete made with precast wastes. Construction and Building Materials, 114, 536–546.10.1016/j.conbuildmat.2016.03.203
  • Topçu, İ. B. & Günçan, N. F. (1995). Using waste concrete as aggregate. Cement and Concrete Research, 25, 1385–1390.10.1016/0008-8846(95)00131-U
  • Uzal, B. (2014). 7 – Properties of concrete with high-volume pozzolans. In F. Pacheco-Torgal, S. Jalali, J. Labrincha, & V. M. John (Eds.), Eco-Efficient Concrete (pp. 138–152). Cambridge: Woodhead Publishing.
  • Wai, H. K., Mahyuddin, R., Kenn, J. K., & Mohd, Z. S. (2012). Influence of the amount of recycled coarse aggregate in concrete design and durability properties. Construction and Building Materials, 26, 565–573.
  • Wainwright, P. J., Trevorrow, A., Yu, Y., & Wang, Y. (1993, October). Modifying the performance of concrete made with coarse and fine recycled aggregates. In Third International RILEM Symposium on Demolition and Reuse of Concrete and Masonry on Demolition and Reuse of Concrete and Masonry, (E&FN Spon 1994) (pp. 319–330), Odense.
  • WBCFS Development. (2014). The cement sustainability initiative, USA. Retrieved April 11, 2016, from http://www.wbcsdcement.org