2,089
Views
12
CrossRef citations to date
0
Altmetric
Research Article

Modeling of interfacial and bulk charge transfer in dye-sensitized solar cells

, , & | (Reviewing Editor)
Article: 1287231 | Received 08 Sep 2016, Accepted 23 Jan 2017, Published online: 24 Feb 2017

References

  • Amiri, O., & Salavati-Niasari, M. (2015). High efficiency dye-sensitized solar cells (9.3%) by using a new compact layer: Decrease series resistance and increase shunt resistance. Materials Letters, 160, 24–27.10.1016/j.matlet.2015.07.077
  • Bavarian, M., Nejati, S., Lau, K. K. S., Lee, D., & Soroush, M. (2013). Theoretical and experimental study of a dye-sensitized solar cell. Industrial & Engineering Chemistry Research, 53, 5234–5247.
  • Belarbi, M., Benyoucef, B., Benyoucef, A., Benouaz, T., & Goumri-Said, S. (2015). Enhanced electrical model for dye-sensitized solar cell characterization. Solar Energy, 122, 700–711.10.1016/j.solener.2015.08.037
  • Boschloo, G., & Hagfeldt, A. (2009). Characteristics of the iodide/triiodide redox mediator in dye-sensitized solar cells. Accounts of Chemical Research, 42, 1819–1826.
  • Daeneke, T., Uemura, Y., Duffy, N. W., Mozer, A. J., Koumura, N., Bach, U., & Spiccia, L. (2012). Aqueous dye-sensitized solar cell electrolytes based on the ferricyanide-ferrocyanide redox couple. Advanced Materials, 24, 1222–1225.10.1002/adma.v24.9
  • Ferber, J., Stangl, R., & Luther, J. (1998). An electrical model of the dye-sensitized solar cell. Solar Energy Materials and Solar Cells, 53, 29–54.10.1016/S0927-0248(98)00005-1
  • Fredin, K., Ruhle, S., Grasso, C., & Hagfeldt, A. (2006). Studies of coupled charge transport in dye-sensitized solar cells using a numerical simulation tool. Solar Energy Materials and Solar Cells, 90, 1915–1927.10.1016/j.solmat.2005.12.004
  • Gagliardi, A., Auf der Maur, M., Gentilini, D., & Di Carlo, A. (2009). Modeling of Dye sensitized solar cells using a finite element method. Journal of Computational Electronics, 8, 398–409.10.1007/s10825-009-0298-7
  • Gagliardi, A., Auf der Maur, M., Gentilini, D., & Di Carlo, A. (2011a). Simulation of dye solar cells: Through and beyond one dimension. Journal of Computational Electronics, 10, 424–436.10.1007/s10825-011-0377-4
  • Gagliardi, A., Auf der Maur, M. A., Di Carlo, A., & Carlo, A. D. (2011b). Theoretical investigation of a dye solar cell wrapped around an optical fiber. IEEE Journal of Quantum Electronics, 47, 1214–1221.10.1109/JQE.2011.2160843
  • Gentilini, D., D’Ercole, D., Gagliardi, A., Brunetti, A., Reale, A., Brown, T., & Di Carlo, A. D. (2010). Analysis and simulation of incident photon to current efficiency in dye sensitized solar cells. Superlattices and Microstructures, 47, 192–196.10.1016/j.spmi.2009.10.005
  • Giannuzzi, R., Manca, M., & Gigli, G. (2013). A new electrical model for the analysis of a partially shaded dye-sensitized solar cells module. Progress in Photovoltaics: Research and Applications, 21, 1520–1530.10.1002/pip.v21.7
  • Gong, J., Qiao, H., Sigdel, S., Elbohy, H., Adhikari, N., Zhou, Z., … Qiao, Q. (2015). Characteristics of SnO2 nanofiber/TiO2 nanoparticle composite for dye-sensitized solar cells. AIP Advances, 5, 067134.10.1063/1.4922626
  • Gong, J., Liang, J., & Sumathy, K. (2012). Review on dye-sensitized solar cells (DSSCs): Fundamental concepts and novel materials. Renewable and Sustainable Energy Reviews, 16, 5848–5860.10.1016/j.rser.2012.04.044
  • Gong, J., & Sumathy, K. (2012, March 28–30). A theoretical study on third generation photovoltaic technology: Dye-sensitized solar cells. Proceedings of the International Conference on Renewable Energies and Power Quality (ICREPQ’12), Santiago de Compostela.
  • Gong, J., Sumathy, K., Qiao, Q., & Zhou, Z. (2017). Review on dye-sensitized solar cells (DSSCs): Advanced techniques and research trends. Renewable and Sustainable Energy Reviews, 68, 234–246.10.1016/j.rser.2016.09.097
  • Gong, J., Sumathy, K., & Liang, J. (2012). Polymer electrolyte based on polyethylene glycol for quasi-solid state dye sensitized solar cells. Renewable Energy, 39, 419–423.10.1016/j.renene.2011.07.015
  • Gong, J., Sumathy, K., & Liang, J. (2016). A simplified electrical model of the dye-sensitised photoelectrochemical cell. International Journal of Sustainable Energy, 35, 75–87.
  • Gong, J., Zhou, Z., Sumathy, K., Yang, H., & Qiao, Q. (2016). Activated graphene nanoplatelets as a counter electrode for dye-sensitized solar cells. Journal of Applied Physics, 119, 135501.10.1063/1.4945375
  • Han, L., Koide, N., Chiba, Y., & Mitate, T. (2004). Modeling of an equivalent circuit for dye-sensitized solar cells. Applied Physics Letters, 84, 2433–2435.10.1063/1.1690495
  • Hauch, A., & Georg, A. (2001). Diffusion in the electrolyte and charge-transfer reaction at the platinum electrode in dye-sensitized solar cells. Electrochimica Acta, 46, 3457–3466.10.1016/S0013-4686(01)00540-0
  • Heo, J. H., Im, S. H., Noh, J. H., Mandal, T. N., Lim, C.-S., Chang, J. A., … Seok, S. (2013). Efficient inorganic–organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors. Nature Photonics, 7, 486–491.10.1038/nphoton.2013.80
  • Huang, Y., Dai, S., Chen, S., Zhang, C., Sui, Y., Xiao, S., & Hu, L. H. (2009). Theoretical modeling of the series resistance effect on dye-sensitized solar cell performance. Applied Physics Letters, 95, 243503.10.1063/1.3270532
  • Joshi, P. H., Korfiatis, D. P., Potamianou, S. F., & Thoma, K.-A. (2013). Optimum oxide thickness for dye-sensitized solar cells—effect of porosity and porous size. A numerical approach. Ionics, 19, 571–576.10.1007/s11581-012-0755-3
  • Koide, N., Islam, A., Chiba, Y., & Han, L. (2006). Improvement of efficiency of dye-sensitized solar cells based on analysis of equivalent circuit. Journal of Photochemistry and Photobiology A: Chemistry, 182, 296–305.10.1016/j.jphotochem.2006.04.030
  • Korfiatis, D. P., Potamianou, S. F., & Thoma, K.-A. (2008). Modeling of dye-sensitized titanium dioxide solar cells. Ionics, 14, 545–548.10.1007/s11581-008-0216-1
  • Maçaira, J., Andrade, L., & Mendes, A. (2014). Modeling, simulation and design of dye sensitized solar cells. RSC Adv, 4, 2830–2844.10.1039/C3RA46295A
  • Miettunen, K., Halme, J., Visuri, A.-M., & Lund, P. (2011). Two-dimensional time-dependent numerical modeling of edge effects in dye solar cells. The Journal of Physical Chemistry C, 115, 7019–7031.10.1021/jp110927j
  • Murakoshi, K., Kano, G., Wada, Y., Yanagida, S., Miyazaki, H., Matsumoto, M., & Murasawa, S. (1995). Importance of binding states between photosensitizing molecules and the TiO2 surface for efficiency in a dye-sensitized solar cell. Journal of Electroanalytical Chemistry, 396, 27–34.10.1016/0022-0728(95)04185-Q
  • Nazeeruddin, M. K., Kay, A., Rodicio, I., Humphry-Baker, R., Mueller, E., Liska, P., … Graetzel, M. (1993). Conversion of light to electricity by cis-X2bis(2,2’-bipyridyl-4,4’-dicarboxylate)ruthenium(II) charge-transfer sensitizers (X = Cl-, Br-, I-, CN-, and SCN-) on nanocrystalline TiO2 electrodes. Journal of the American Chemical Society, 115, 6382–6390.10.1021/ja00067a063
  • Ni, M., Leung, M. K. H., Leung, D. Y. C., & Sumathy, K. (2006). Theoretical modeling of TiO2/TCO interfacial effect on dye-sensitized solar cell performance. Solar Energy Materials and Solar Cells, 90, 2000–2009.10.1016/j.solmat.2006.02.005
  • Ni, M., Leung, M. K. H., & Leung, D. Y. C. (2008). Theoretical modelling of the electrode thickness effect on maximum power point of dye-sensitized solar cell. The Canadian Journal of Chemical Engineering, 86, 35–42.10.1002/(ISSN)1939-019X
  • Noh, S. I., Ahn, H. J., & Riu, D. H. (2012). Photovoltaic property dependence of dye-sensitized solar cells on sheet resistance of FTO substrate deposited via spray pyrolysis. Ceramics International, 38, 3735–3739.10.1016/j.ceramint.2012.01.018
  • Oda, T., Tanaka, S., & Hayase, S. (2006). Differences in characteristics of dye-sensitized solar cells containing acetonitrile and ionic liquid-based electrolytes studied using a novel model. Solar Energy Materials and Solar Cells, 90, 2696–2709.10.1016/j.solmat.2005.11.013
  • Papageorgiou, N., Athanassov, Y., Armand, M., Bonho, P., Pettersson, H., Azam, A., & Grätzel, M. (1996). The performance and stability of ambient temperature molten salts for solar cell applications. Journal of The Electrochemical Society, 143, 3099–3108.10.1149/1.1837171
  • Papageorgiou, N., Maier, W. F., & Grätzel, M. (1997). An iodine/triiodide reduction electrocatalyst for aqueous and organic media. Journal of The Electrochemical Society, 144, 876–884.10.1149/1.1837502
  • Press, W. H., & Teukolsky, S. A. (2007). Numerical recipes: The art of scientific computing (3rd ed.). Cambridge: Cambridge University Press.
  • Rock, S. E., Shi, X., Garland, J. E., & Roy, D. (2014). Experimental considerations for temperature controlled measurements of fast charge recombination times in dye sensitized solar cells using open circuit voltage decay and impedance spectroscopy. Measurement, 53, 71–82.10.1016/j.measurement.2014.03.012
  • Sigdel, S., Elbohy, H., Gong, J., Adhikari, N., Sumathy, K., Qiao, H., … Qiao, Q. (2015). Dye-sensitized solar cells based on porous hollow tin oxide nanofibers. IEEE Transactions on Electron Devices, 62, 2027–2032.10.1109/TED.2015.2421475
  • Soedergren, S., Hagfeldt, A., Olsson, J., & Lindquist, S.-E. (1994). Theoretical models for the action spectrum and the current-voltage characteristics of microporous semiconductor films in photoelectrochemical cells. The Journal of Physical Chemistry, 98, 5552–5556.10.1021/j100072a023
  • Usami, A., Seki, S., Mita, Y., Kobayashi, H., Miyashiro, H., & Terada, N. (2009). Temperature dependence of open-circuit voltage in dye-sensitized solar cells. Solar Energy Materials and Solar Cells, 93, 840–842.10.1016/j.solmat.2008.09.040
  • Vetter, K. J. (2013). Elektrochemische Kinetik. New York, NY: Springer-Verlag.
  • Yella, A., Lee, H.-W., Tsao, H. N., Yi, C., Chandiran, A. K., Nazeeruddin, M. K., … Gratzel, M. (2011). Porphyrin-sensitized solar cells with cobalt (II/III)-based redox electrolyte exceed 12 percent efficiency. Science, 334, 629–634.10.1126/science.1209688
  • Yum, J.-H., Baranoff, E., Kessler, F., Moehl, T., Ahmad, S., Bessho, T., … Grätzel, M. (2012). A cobalt complex redox shuttle for dye-sensitized solar cells with high open-circuit potentials. Nature Communications, 3, 631.doi:10.1038/ncomms1655
  • Zheng, M., Huo, J., Tu, Y., Wu, J., Hu, L., & Dai, S. (2015). Flowerlike molybdenum sulfide/multi-walled carbon nanotube hybrid as Pt-free counter electrode used in dye-sensitized solar cells. Electrochimica Acta, 173, 252–259.10.1016/j.electacta.2015.05.069
  • Zhou, Z., Sigdel, S., Gong, J., Vaagensmith, B., Elbohy, H., Yang, H., … Qiao, Q. (2016). Graphene-beaded carbon nanofibers with incorporated Ni nanoparticles as efficient counter-electrode for dye-sensitized solar cells. Nano Energy, 22, 558–563.10.1016/j.nanoen.2016.03.003