516
Views
5
CrossRef citations to date
0
Altmetric
Research Article

Novel expressions for time domain responses of fractance device

ORCID Icon | (Reviewing Editor)
Article: 1320823 | Received 06 Mar 2017, Accepted 15 Apr 2017, Published online: 26 Apr 2017

References

  • Ahmad, W., El-khazali, R., & Elwakil, A. S. (2001). Fractional-order Wien-bridge oscillator. Electronics Letters, 37, 1110–1112. doi:10.1049/el:20010756
  • Atangana, A., & Secer, A. (2013, April). A note on fractional order derivatives and table of fractional derivatives of some special functions. In Abstract and applied analysis (Vol. 2013). Hindawi. doi: 10.1155/2013/279681
  • Banchuin, R., & Chaisricharoen, R. (2015, June). A generic analytical model of fractance response in time domain. In 2015 12th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON) (pp. 1–4). IEEE. doi: 10.1109/ECTICon.2015.7207137
  • Barsoukov, E., & Macdonald, J. R. (Eds.). (2005). Impedance spectroscopy: Theory, experiment, and applications. Hoboken, NJ: Wiley.
  • Charef, A. (2006). Analogue realisation of fractional-order integrator, differentiator and fractional PIλDµ controller. IEE Proceedings-Control Theory and Applications, 153, 714–720. doi:10.1049/ip-cta:20050019
  • Dorčák, Ľ., Terpák, J., Petráš, I., & Dorčáková, F. (2007). Electronic realization of the fractional-order systems. Acta Montanistica Slovaca, 12, 231–237. Retrieved from http://actamont.tuke.sk/
  • Dwork, B. (1990). Generalized hypergeometric functions. Oxford: Clarendon Press.
  • Elwakil, A. S. (2010). Fractional-order circuits and systems: An emerging interdisciplinary research area. IEEE Circuits and Systems Magazine, 10, 40–50. doi:10.1109/MCAS.2010.938637
  • Elwakil, A. S., & Maundy, B. (2010). Extracting the Cole-Cole impedance model parameters without direct impedance measurement. Electronics Letters, 46, 1367–1368. doi:10.1049/el.2010.1924
  • Freeborn, T. J., Maundy, B., & Elwakil, A. S. (2013). Measurement of Supercapacitor fractional-order model parameters from voltage-excited step response. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 3, 367–376. doi:10.1109/JETCAS.2013.2271433
  • Gómez-Aguilar, J. F., Rosales-García, J. J., Bernal-Alvarado, J. J., Córdova-Fraga, T., & Guzmán-Cabrera, R. (2012). Fractional mechanical oscillators. Revista mexicana de física, 58, 348–352. Retrieved from http://rmf.smf.mx/
  • Inaba, A., Manabe, T., Tsuji, H., & Iwamoto, T. (1995). Electrical impedance analysis of tissue properties associated with ethylene induction by electric currents in cucumber (Cucumis sativus L.) Fruit. Plant Physiology, 107, 199–205. Retrieved from http://www.plantphysiol.org/10.1104/pp.107.1.199
  • Jesus, I. S., MacHado, J. T., & Cunha, J. B. (2008). Fractional electrical impedances in botanical elements. Journal of Vibration and Control, 14, 1389–1402. doi:10.1177/1077546307087442
  • Jifeng, W., & Yuankai, L. (2005). Frequency domain analysis and applications for fractional-order control systems. Journal of physics: Conference series, 13, 268. doi:10.1088/1742-6596/13/1/063
  • Krishna, B. T., Reddy, K. V. V. S., & Santa Kumari, S. (2008). Time domain response calculations of fractance device of order 1/2. Journal of Active and Passive Electronic Devices, 3, 355–367. Retrieved from http://www.oldcitypublishing.com/journals/japed-home/
  • Ma, Y., Zhou, X., Li, B., & Chen, H. (2016). Fractional modeling and SOC estimation of lithium-ion battery. IEEE/CAA Journal of Automatica Sinica, 3, 281–287. doi:10.1109/JAS.2016.7508803
  • Podlubny, I. (2002). Geometric and physical interpretation of fractional integration and fractional differentiation. Fractional Calculus & Applied Analysis, 5, 367–386. Retrieved from https://arxiv.org/pdf/math/0110241.pdf
  • Radwan, A. G., & Elwakil, A. S. (2012a). An expression for the voltage response of a current-excited fractance device based on fractional-order trigonometric identities. International Journal of Circuit Theory and Applications, 40, 533–538. doi:10.1002/cta.760
  • Radwan, A. G., & Elwakil, A. S. (2012b, November). Transient-time fractional-space trigonometry and application. In International Conference on Neural Information Processing (pp. 40–47). Springer Berlin Heidelberg. doi: 10.1007/978-3-642-34475-6_6
  • Schäfer, I., & Krüger, K. (2006). Modelling of coils using fractional derivatives. Journal of Magnetism and Magnetic Materials, 307, 91–98. doi:10.1016/j.jmmm.2006.03.046
  • Stanislavsky, A. A. (2005). Twist of fractional oscillations. Physica A: Statistical Mechanics and its Applications, 354, 101–110. doi:10.1016/j.physa.2005.02.033
  • Tang, C., You, F., Cheng, G., Gao, D., Fu, F., & Dong, X. (2009). Modeling the frequency dependence of the electrical properties of the live human skull. Physiological Measurement, 30, 1293. doi:10.1088/0967-3334/30/12/001
  • Valério, D., Trujillo, J. J., Rivero, M., Machado, J. T., & Baleanu, D. (2013). Fractional calculus: A survey of useful formulas. The European Physical Journal Special Topics, 222, 1827–1846. doi:10.1140/epjst/e2013-01967-y
  • Vinagre, B. M., & Feliu, V. (2007). Optimal fractional controllers for rational order systems: A special case of the wiener-hopf spectral factorization method. IEEE Transactions on Automatic Control, 52, 2385–2389. doi:10.1109/TAC.2007.910728
  • Willis, J. L. (2012). Acceleration of generalized hypergeometric functions through precise remainder asymptotics. Numerical Algorithms, 59, 447–485. doi:10.1007/s11075-011-9499-9