894
Views
11
CrossRef citations to date
0
Altmetric
Research Article

Performance evaluation of efficient combinational logic design using nanomaterial electronics

ORCID Icon, , & | (Reviewing Editor)
Article: 1349539 | Received 31 Dec 2016, Accepted 27 Jun 2017, Published online: 19 Jul 2017

References

  • Abdullah-Al-Shafi, M. (2016a). Analysis of fredkin logic circuit in nanotechnology: An efficient approach. International Journal of Hybrid Information Technology, 9, 371–380.10.14257/ijhit
  • Abdullah-Al-Shafi, M. (2016b). Synthesis of peres and R logic circuits in nanoscopic scale. Communications on Applied Electronics, 4, 20–25.10.5120/cae2016652004
  • Abdullah-Al-Shafi, M., & Bahar, A. N. (2016a). QCA: An effective approach to implement logic circuit in nanoscale. In Presented at the 5th International Conference on Informatics, Electronics & Vision (ICIEV), International Conference on, IEEE (pp. 620–624). Dhaka.
  • Abdullah-Al-Shafi, M., & Bahar, A. N. (2016b). Optimized design and performance analysis of novel comparator and full adder in nanoscale. Cogent Engineering, 3, 1237864.
  • Abdullah-Al-Shafi, M., & Bahar, A. N. (2016c). Novel binary to gray code converters in QCA with power dissipation analysis. International Journal of Multimedia and Ubiquitous Engineering, 11, 379–396.10.14257/ijmue
  • Arqub, O. A. (2015). Adaptation of reproducing kernel algorithm for solving fuzzy Fredholm-Volterra integrodifferential equations. Neural Computing & Applications. doi:10.1007/s00521-015-x
  • Arqub, O. A., Al-Smadi, M., Momani, S., & Hayat, T. (2016). Application of reproducing kernel algorithm for solving second-order, two-point fuzzy boundary value problems. Soft Computing. doi:10.1007/s00500-016-2262-3
  • Askari, M., Taghizadeh, M., & Farhad, K. (2008). Digital design using quantum-dot cellular automata (a nanotechnology method). In Proceedings of the IEEE international conference on computer and communication engineering (ICCCE 2008) (pp. 952–955).
  • Bahar, A. N., Abdullah-Al-Shafi, M., & Bhuiyan, M. M. R. (2017). Designing efficient QCA even parity generator circuits with power dissipation analysis. Alexandria Engineering Journal. doi:10.1016/j.aej.2017.02.002 ( Accepted).
  • Compano, R., Molenkamp, L., & Paul, D. J. (2000). Roadmap for Nanoelectronics. European Commission IST Programme, Future and Emerging Technologies.
  • Das, J. C., & De, D. (2016). Quantum-dot cellular automata based reversible low power parity generator and parity checker design for nanocommunication. Frontiers of Information Technology & Electronic Engineering, 17, 224–236.
  • Debnath, B., Das, J. C., & De, D. (2016). Reversible logic-based image steganography using quantum dot cellular automata for secure nanocommunication. IET Circuits, Devices & Systems, 11, 1–10.
  • Debnath, B., Das, J. C., De, D., & Sadhu, T. (2016, March). A novel low power nanoscale reversible decoder using quantum-dot cellular automata for nanocommunication. In Devices, circuits and systems (ICDCS), 2016 3rd International conference on IEEE (pp. 220–224).
  • Hashemi, S., Azghadi, M., & Zakerolhosseini, A. (2008). A novel QCA multiplexer design. In Proceedings of the IEEE international symposium on telecommunications (pp. 692–696).
  • Henderson, S. C., Johnson, E. W., Janulis, J. R., & Tougaw, P. D. (2004). Incorporating standard CMOS design process methodologies into the QCA logic design process. IEEE Transactions On Nanotechnology, 3, 2–9.10.1109/TNANO.2003.820506
  • Hennessy, K., & Lent, C. S. (2001). Clocking of molecular quantum-dot cellular automata. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, 19, 1752–1755.10.1116/1.1394729
  • Islam, M. S., Shafi, M. A., & Bahar, A. N. (2016). A New Approach of Presenting Universal Reversible Gate in Nanoscale. International Journal of Computer Applications, 134, 1–5.10.5120/ijca2016910208
  • Islam, S., Shafi, M. A., & Bahar, A. N. (2015). Implementation of binary to gray code converters in quantum dot cellular automata. Journal of Today's Ideas–Tomorrow's Technologies, 3, 145–160.10.15415/jotitt.2015
  • Kianpour, M., & Sabbaghi-Nadooshan, R. (2011, December). A novel modular decoder implementation in quantum-dot cellular automata (QCA). In Nanoscience, technology and societal implications (NSTSI), 2011, International conference on IEEE (pp. 1–5).
  • Kim, K., Wu, K., & Karri, R. (2007). The robust QCA adder designs using composable QCA building blocks. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 26, 76–183.
  • Lent, C. S., Tougaw, P. D., Porod, W., & Bernstein, G. H. (1993). Quantum cellular automata. Nanotechnology, 4, 49.10.1088/0957-4484/4/1/004
  • Liu, W., Srivastava, S., Lu, L., O’Neill, M., & Swartzlander, E. E. (2012). Are QCA cryptographic circuits resistant to power analysis attack? IEEE Transactions on Nanotechnology, 11, 1239–1251.
  • Makanda, K., & Jeon, J. C. (2014). Combinational Circuit Design Based on Quantum-Dot Cellular Automata. International Journal of Control and Automation, 7, 369–378.
  • Mardiris, V. A., & Karafyllidis, I. G. (2010). Design and simulation of modular 2n to 1 quantum-dot cellular automata (QCA) multiplexers. International Journal of Circuit Theory and Applications, 38, 771–785.
  • Mardiris, V., Mizas, C. H., Fragidis, L., & Chatzis, V. (2008). Design and simulation of a QCA 2 to 1 multiplexer. In Proceedings of the 12th WSEAS International Conference on Computers (pp. 572–576).
  • Roohi, A., DeMara, R., & Khoshavi, N. (2015). Design and evaluation of an ultra-area-efficient fault-tolerant QCA full adder. Microelectronics Journal, 46, 531–542.10.1016/j.mejo.2015.03.023
  • Roohi, A., Khademolhosseini, H., Sayedsalehi, S., & Navi, K. (2011). A novel architecture for quantum-dot cellular automata multiplexer. International Journal of Computer Science Issues, 8, 55–60.
  • Sabbaghi-Nadooshan, R., & Kianpour, M. (2013). A novel QCA implementation of MUX-based universal shift register. Journal of Computational Electronics, 13, 1–13.
  • Sen, B., Dutta, M., Goswami, M., & Sikdar, B. K. (2014). Modular design of testable reversible ALU by QCA multiplexer with increase in programmability. Microelectronics Journal, 45, 1522–1532.10.1016/j.mejo.2014.08.012
  • Sen, B., Dutta, M., Saran, D., & Sikdar, B. K. (2012). An efficient multiplexer in quantum-dot cellular automata. Progress in VLSI design and test. Lecture notes in computer science (Vol. 7373, pp. 350–351). Berlin: Springer.10.1007/978-3-642-31494-0
  • Sen, B., Goswami, M., Mazumdar, S., & Sikdar, B. K. (2015). Towards modular design of reliable quantum-dot cellular automata logic circuit using multiplexers. Computers & Electrical Engineering, 45, 42–54.10.1016/j.compeleceng.2015.05.001
  • Sen, B., Nag, A., De, A., & Sikdar, B. K. (2015). Towards the hierarchical design of multilayer QCA logic circuit. Journal of Computational Science, 11, 233–244.10.1016/j.jocs.2015.09.010
  • Shafi, A., Bahar, A. N., & Islam, M. S. (2015). A quantitative approach of reversible logic gates in QCA. Journal of Communications Technology, Electronics and Computer Science, 3, 22–26.10.22385/jctecs.v3i0.33
  • Silva, D. S., Sardinha, L. H., Vieira, M. A., Vieira, L. F., & Neto, O. P. V. (2015). Robust serial nanocommunication with QCA. IEEE Transactions on Nanotechnology, 14, 464–472.10.1109/TNANO.2015.2407696
  • Singh, S., Pandey, S., & Wairya, S. (2016). Modular design of 2 n: 1 quantum dot cellular automata multiplexers and its application, via clock zone based crossover. International Journal of Modern Education and Computer Science, 8, 41–52.10.5815/ijmecs
  • Teodósio, T., & Sousa, L. (2007). QCA-LG: A tool for the automatic layout generation of QCA combinational circuits. In Proceedings of the 25th IEEE norchip conference (pp. 1–5).
  • Vetteth, A., Walus, K., Dimitrov, V. S., & Jullien, G. A. (2002, September). Quantum-dot cellular automata carry-look-ahead adder and barrel shifter. In IEEE emerging telecommunications technologies conference (pp. 2–4).
  • Walus, K., Dysart, T. J., Jullien, G. A., & Budiman, R. A. (2004). QCA designer: A rapid design and simulation tool for quantum-dot cellular automata. IEEE Transactions On Nanotechnology, 3, 26–31.10.1109/TNANO.2003.820815
  • Zhou, R., Xia, X., Wang, F., Shi, Y., & Liao, H. (2012). A logic circuit design of 2-4 decoder using quantum cellular automata. Journal of Computational Information Systems, 8, 3463–3469.