776
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Dynamic and static structural responses of the spent nuclear fuel disposal canister due to the accidental drop and impact on to the ground

| (Reviewing Editor)
Article: 1373417 | Received 06 Jul 2017, Accepted 26 Aug 2017, Published online: 09 Sep 2017

References

  • Aquaro, D., & Forassasi, G. (1983). Impact tests on scale models of a shock absorber for LWR spent fuel transport packaging. In 7th International Conference on Structural Mechanics in Reactor Technology. Chicago, IL.
  • Aquaro, D., Zaccari, N., Di Prinzio, M., & Forasassi, G. (2010). Numerical and experimental analysis of the impact of a nuclear spent fuel cask. Nuclear Engineering and Design, 240, 706–712.10.1016/j.nucengdes.2009.12.018
  • Börgesson, L. (1992). Interaction between rock, bentonite buffer and canister. FEM calculations of some mechanical effects on the canister in different disposal concepts (p.83 + appendixes, Technical report TR 92-20). Stockholm: Swedish Nuclear Fuel and Waste Management. ISSN 0284-3757.
  • Brach, R. M. (1991). Mechanical impact dynamics: Rigid body collisions. New York, NY: John Wiley & Sons.
  • Chijimatsu, M., Nguyen, T. S., Jing, L., De Jonge, J., Kohlmeier, M., Millard, A., … Sugita, Y. (2005). Numerical study of the THM effects on the near-field safety of a hypothetical nuclear waste repository—BMT1 of the DECOVALEX III project. Part 1: Conceptualization and characterization of the problems and summary of results. International Journal of Rock Mechanics & Mining Sciences, 42, 720–730.10.1016/j.ijrmms.2005.03.010
  • Cho, H. J., Lee, J. Y., Cho, D. K., Kim, S. K., Kim, S. S., Kim, K. Y., …Lee, J. O. (2008). Korean reference HLW disposal system (KAERI /TR-3653/2008). Korea: Korea Atomic Energy Research Institute.
  • Choi, J. W., Kim, W. J., & Kang, C. H. (1999). Reference spent fuel and its characteristics for a deep geological repository concept development. Journal of the Korean Nuclear Society, 31, 23–38 [in Korean].
  • Choi, W. S., & Seo, K. S. (2010). A simple sizing optimization technique for an impact limiter based on dynamic material properties. Nuclear Engineering and Design, 240, 925–932.10.1016/j.nucengdes.2009.12.008
  • Diersch, R., Weiss, M., & Dreier, G. (1994). Investigation of the impact behaviour of wooden impact limiters. Nuclear Engineering and Design, 150, 341–348.10.1016/0029-5493(94)90153-8
  • Goldsmith, W. (1960). Impact: The theory and physical behavior of colliding solids. London: Edward Arnold.
  • Hunter, S. C. (1957). Energy absorbed by elastic waves during impact. Journal of the Mechanics and Physics of Solids, 5, 162–171.10.1016/0022-5096(57)90002-9
  • Hunter, S. C. (1960). The Hertz problem for a rigid spherical indenter and a viscoelastic half-space. Journal of the Mechanics and Physics of Solids, 8, 219–234.10.1016/0022-5096(60)90028-4
  • International Atomic Energy Agency. (1996). IAEA safety standards series No. ST-1, Regulations for the safe transport of radioactive material.
  • Jaeger, J. (1994). Analytical solutions of contact impact problems. Applied Mechanics Reviews, 47, 35–54.10.1115/1.3111070
  • Kwon, Y. J. (2010). Finite element analysis of transient heat transfer in and around a deep geological repository for a spent nuclear fuel disposal canister and the heat generation of the spent nuclear fuel. Nuclear Science and Engineering, 164, 264–286.10.13182/NSE09-11
  • Kwon, Y. J. (2011). Structural analysis of PWR (pressurized water reactor) canister for applied impact force occurring at the moment of falling plumb down collision. Journal of the Computational Structural Engineering Institute of Korea, 24, 211–222 [in Korean].
  • Kwon, Y. J. (2013). Rigid body dynamic analyses on the spent nuclear fuel disposal canister under accidental drop and impact to the ground: Numerical analysis. Journal of the Computational Structural Engineering Institute of Korea, 26, 373–384 [in Korean].10.7734/COSEIK.2013.26.5.373
  • Kwon, Y. J. (2016). Theoretical and numerical computation of impact impulse due to frictionless collision experienced by a spent nuclear fuel disposal canister accidentally dropped on the ground. Journal of Mechanical Science and Technology, 30, 637–642.10.1007/s12206-016-0117-6
  • Kwon, Y. J., & Choi, J. W. (2003). Finite element stress analysis of spent nuclear fuel disposal canister in a deep geological repository. JSME International Journal Series A, 46, 543–549.10.1299/jsmea.46.543
  • Kwon, Y. J., Kang, S. W., Choi, J. W., & Kang, C. H. (2001). Structural analysis for the determination of design variables of spent nuclear fuel disposal canister. KSME International Journal, 15, 327–338.10.1007/BF03185216
  • Lee, J., Cho, D. K., Choi, H. J., & Choi, J. W. (2007). Concept of a Korean reference disposal system for spent fuels. Journal of Nuclear Science and Technology, 44, 1565–1573.10.1080/18811248.2007.9711407
  • Lee, Y. S., Kim, H. S., Kang, Y. H., Chung, S. H., & Choi, Y. J. (2004). Effect of irradiation on the impact and seismic response of a spent fuel storage and transport cask. Nuclear Engineering and Design, 232, 123–129.10.1016/j.nucengdes.2004.05.001
  • Lee, Y. S., Ryu, C. H., Kim, H. S., & Choi, Y. J. (2005). A study on the free drop impact of a cask using commercial FEA codes. Nuclear Engineering and Design, 235, 2219–2226.10.1016/j.nucengdes.2005.03.009
  • Liu, J., Wen, G., & Xie, Y. M. (2016). Layout optimization of continuum structures considering the probabilistic and fuzzy directional uncertainty of applied loads based on the cloud model. Structural and Multidisciplinary Optimization, 53, 81–100.10.1007/s00158-015-1334-9
  • Maw, N., Barber, J. R., & Fawcett, J. N. (1976). The oblique impact of elastic spheres. Wear, 38, 101–114.10.1016/0043-1648(76)90201-5
  • Miller, G. K. (1993). Calculation of impact loads for high energy drops of cylindrical containers. International Journal of Impact Engineering, 13, 511–526.10.1016/0734-743X(93)90083-J
  • Pestel, E. C., & Thomson, W. T. (1968). Dynamics. McGraw-Hill Book Company.
  • Stronge, W. J. (2000). Impact mechanics. Cambridge: Cambridge University Press.10.1017/CBO9780511626432
  • Teng, T. L., Chu, Y. A., Chang, F. A., Chin, H. S., & Lee, M. C. (2003). The dynamic analysis of nuclear waste cask under impact loading. Annals of Nuclear Energy, 30, 1473–1485.10.1016/S0306-4549(03)00080-X
  • Teper, W. W., & Suavé, R. G. (1989). Simplified method for predicting impact loads of solid-walled transportation packagings for radioactive materials. Journal of Pressure Vessel Technology, 111, 316–321.
  • Wang, B., Gea, H. C., & Kwon, Y. J. (2014). Finite element analysis of stresses and deformations occurring in the spent nuclear fuel (SNF) disposal canister deposited in a deep geological repository. Nuclear Engineering and Design, 266, 166–179.10.1016/j.nucengdes.2013.10.030
  • Wang, Y., & Mason, M. T. (1992). Two-dimensional rigid-body collisions with friction. Journal of Applied Mechanics, 59, 635–642.10.1115/1.2893771
  • Wittenburg, J. (2007). Dynamics of multibody systems (2nd ed.). New York, NY: Springer.
  • Zhao, J., & Wang, C. (2014). Robust structural topology optimization under random field loading uncertainty. Structural and Multidisciplinary Optimization, 50, 517–522.10.1007/s00158-014-1119-6
  • Zhong, Z. H., & Jaroslav, M. (1994). Contact-impact problems: A review with bibliography. Applied Mechanics Reviews, 47, 35–54.
  • Zhou, C. Y., Yu, T. X., & Lee, R. S. W. (2008). Drop/impact tests and analysis of typical portable electronic devices. International Journal of Mechanical Sciences, 50, 905–917.10.1016/j.ijmecsci.2007.09.012
  • Zhou, W., Apted, M. J., & Kessler, J. H. (2010). The thermal-hydrological impact on increased spent-fuel storage capacity in yucca mountain repository. Nuclear Technology, 170, 336–352.10.13182/NT10-A9487