2,340
Views
12
CrossRef citations to date
0
Altmetric
Research Article

Gas-liquid two-phase flows in double inlet cyclones for natural gas separation

ORCID Icon, & ORCID Icon | (Reviewing Editor)
Article: 1373421 | Received 19 Jul 2017, Accepted 25 Aug 2017, Published online: 05 Sep 2017

References

  • Avci, A., & Karagoz, I. (2001). Theoretical investigation of pressure losses in cyclone separators. International Communications in Heat and Mass Transfer, 28, 107–117.10.1016/S0735-1933(01)00218-4
  • Baltrėnas, P., & Chlebnikovas, A. (2015). Experimental research on the dynamics of airflow parameters in a six-channel cyclone-separator. Powder Technology, 283, 328–333.10.1016/j.powtec.2015.06.005
  • Bird, R. B., Warren, E. S., & Edwin, E. L. (1960). Transport phenomena. NewYork, NY: Wiley.
  • Chen, J., Sun, G., & Shi, M. (2001). An experimental research on the pilot-scale cold model of the three-stage PV type cyclone separator for acrylonitrile reactors. Chemical Engineering & Machinery, 5, 187–192.
  • Chmielniak, T., & Bryczkowski, A. (2000). Method of calculation of new cyclone-type separator with swirling baffle and bottom take off of clean gas–part I: Theoretical approach. Chemical Engineering and Processing: Process Intensification, 39, 441–448.10.1016/S0255-2701(00)00094-5
  • Chu, K. W., Wang, B., Xu, D. L., Chen, Y. X., & Yu, A. B. (2011). CFD–DEM simulation of the gas–solid flow in a cyclone separator. Chemical Engineering Science, 66, 834–847.10.1016/j.ces.2010.11.026
  • Cortes, C., & Gil, A. (2007). Modeling the gas and particle flow inside cyclone separators. Progress in Energy and Combustion Science, 33, 409–452.10.1016/j.pecs.2007.02.001
  • Enliang, L., & Yingmin, W. (1989). A new collection theory of cyclone separators. AIChE Journal, 35, 666–669.10.1002/(ISSN)1547-5905
  • Gimbun, J., Chuah, T. G., Choong, T. S., & Fakhru’l-Razi, A. (2005). A CFD study on the prediction of cyclone collection efficiency. International Journal for Computational Methods in Engineering Science and Mechanics, 6, 161–168.10.1080/15502280590923649
  • Griffiths, W. D., & Boysan, F. (1996). Computational fluid dynamics (CFD) and empirical modelling of the performance of a number of cyclone samplers. Journal of Aerosol Science, 27, 281–304.10.1016/0021-8502(95)00549-8
  • Hoekstra, A. J., Derksen, J. J., & Van Den Akker, H. E. A. (1999). An experimental and numerical study of turbulent swirling flow in gas cyclones. Chemical Engineering Science, 54, 2055–2065.10.1016/S0009-2509(98)00373-X
  • Ji, Z., Xiong, Z., Wu, X., Chen, H., & Wu, H. (2009). Experimental investigations on a cyclone separator performance at an extremely low particle concentration. Powder Technology, 191, 254–259.10.1016/j.powtec.2008.10.015
  • Jiao, J., Zheng, Y., Wang, J., & Sun, G. (2008). Experimental and numerical investigations of a dynamic cyclone with a rotary impeller. Chemical Engineering and Processing: Process Intensification, 47, 1861–1866.10.1016/j.cep.2007.10.015
  • Kim, J., & Lee, K. (1990). Experimental study of particle collection by small cyclones. Aerosol Science and Technology, 12, 1003–1015.10.1080/02786829008959410
  • Martignoni, W. P., Bernardo, S., & Quintani, C. L. (2007). Evaluation of cyclone geometry and its influence on performance parameters by computational fluid dynamics (CFD). Brazilian Journal of Chemical Engineering, 24, 83–94.10.1590/S0104-66322007000100008
  • Ogawa, A., Hironaka, A., Kato, T., & Seito, O. (1991). Velocity distributions of gas flow and the separation efficiency of the semi-spherical cyclone. Advanced Powder Technology, 2, 191–212.10.1163/156855291X00288
  • Oh, J., Choi, S., & Kim, J. (2015). Numerical simulation of an internal flow field in a uniflow cyclone separator. Powder Technology, 274, 135–145.10.1016/j.powtec.2015.01.015
  • Ounis, H., Ahmadi, G., & McLaughlin, J. B. (1991). Brownian diffusion of sub-micrometer particles in the viscous sub-layer. Journal of Colloid and Interface Science, 143, 266–277.10.1016/0021-9797(91)90458-K
  • Raoufi, A., Shams, M., & Kanani, H. (2009). CFD analysis of flow field in square cyclones. Powder Technology, 191, 349–357.10.1016/j.powtec.2008.11.007
  • Saffman, P. G. (1965). The lift on a small sphere in a slow shear flow. Journal of Fluid Mechanics, 22, 385–400.10.1017/S0022112065000824
  • Sgrott, O. L., Noriler, D., Wiggers, V. R., & Meier, H. F. (2015). Cyclone optimization by COMPLEX method and CFD simulation. Powder Technology, 277, 11–21.10.1016/j.powtec.2015.02.039
  • Shukla, S. K., Shukla, P., & Ghosh, P. (2011). Evaluation of numerical schemes for dispersed phase modeling of cyclone separators. Engineering Applications of Computational Fluid Mechanics, 5, 235–246.10.1080/19942060.2011.11015367
  • Su, Y., & Mao, Y. (2006). Experimental study on the gas–solid suspension flow in a square cyclone separator. Chemical Engineering Journal, 121, 51–58.10.1016/j.cej.2006.04.008
  • Sun, G., Chen, J., & Shi, M. (2005). Optimization and applications of reverse-flow cyclones. China Particuology, 3, 43–46.10.1016/S1672-2515(07)60162-6
  • Tien, Y., & Ray, M. (2000). Development of a post cyclone to improve the efficiency of reverse flow cyclones. Powder Technology, 113, 97–108.
  • Wang, B., Xu, D. L., Chu, K. W., & Yu, A. B. (2006). Numerical study of gas–solid flow in a cyclone separator. Applied Mathematical Modelling, 30, 1326–1342.10.1016/j.apm.2006.03.011
  • Wen, C., Cao, X., Yang, Y., & Li, W. (2012). An unconventional supersonic liquefied technology for natural gas. Energy Education Science and Technology Part A: Energy Science and Research, 30, 651–660.
  • Wen, C., Li, J., Wang, S., & Yang, Y. (2015). Experimental study on stray current corrosion of coated pipeline steel. Journal of Natural Gas Science and Engineering, 27, 1555–1561.10.1016/j.jngse.2015.10.022
  • Yokogawa Electric Corporation. (2007). Digital Vortex Flowmeter digitalYEWFLO. Retrieved from https://www.yokogawa.com
  • Yang, Y., Li, A., & Wen, C. (2017). Optimization of static vanes in a supersonic separator for gas purification. Fuel Processing Technology, 156, 265–270.10.1016/j.fuproc.2016.09.006
  • Yang, Y., Li, Z., & Wen, C. (2013). Effects of alternating current on X70 steel morphology and electrochemical behavior. Acta Metallurgica Sinica, 49, 43–50.10.3724/SP.J.1037.2012.00361
  • Yang, Y., Wang, S., & Wen, C. (2016). Experimental study on alternating current corrosion of pipeline steel in alkaline environment. International Journal of Electrochemical Science, 11, 7150–7162.10.20964/2016.08.64
  • Yang, Y., Walther, J. H., Yan, Y., & Wen, C. (2017). CFD modelling of condensation process of water vapor in supersonic flows. Applied Thermal Engineering, 115, 1357–1362.10.1016/j.applthermaleng.2017.01.047
  • Yang, Y., & Wen, C. (2017). CFD modeling of particle behavior in supersonic flows with strong swirls for gas separation. Separation and Purification Technology, 174, 22–28.10.1016/j.seppur.2016.10.002
  • Yoshida, H., Yoshikawa, S., Fukui, K., & Yamamoto, T. (2008). Effect of multi-inlet flow on particle classification performance of hydro-cyclones. Powder Technology, 184, 352–360.10.1016/j.powtec.2007.09.008
  • Zhao, B., Su, Y., & Zhang, J. (2006). Simulation of gas flow pattern and separation efficiency in cyclone with conventional single and spiral double inlet configuration. Chemical Engineering Research and Design, 84, 1158–1165.10.1205/cherd06040