804
Views
10
CrossRef citations to date
0
Altmetric
Research Article

Ultra-efficient design of robust RS flip-flop in nanoscale with energy dissipation study

ORCID Icon & ORCID Icon | (Reviewing Editor)
Article: 1391060 | Received 26 Jun 2017, Accepted 09 Oct 2017, Published online: 15 Nov 2017

References

  • Abdullah-Al-Shafi, M. (2016a). Analysis of fredkin logic circuit in nanotechnology: An efficient approach. International Journal of Hybrid Information Technology, 9(2), 371–380.10.14257/ijhit
  • Abdullah-Al-Shafi, M. (2016b). Synthesis of Peres and R Logic circuits in nanoscopic scale. Communications on Applied Electronics, 4(1), 20–25.10.5120/cae2016652004
  • Abdullah-Al-Shafi, M., Aneek, R. H., & Bahar, A. N. (2017). Universal reversible gate in quantum dot cellular automata (QCA): A multilayer design paradigm. International Journal of Grid and Distributed Computing, 10(1), 43–50.10.14257/ijgdc
  • Abdullah-Al-Shafi, M., & Bahar, A. N. (2016a). Novel binary to gray code converters in QCA with power dissipation analysis. International Journal of Multimedia and Ubiquitous Engineering, 11(8), 379–396.10.14257/ijmue
  • Abdullah-Al-Shafi, M., & Bahar, A. N. (2016b). Optimized design and performance analysis of novel comparator and full adder in nanoscale. Cogent Engineering, 3(1), 1237864.
  • Abdullah-Al-Shafi, M., & Bahar, A. N. (2016c). QCA: An effective approach to implement logic circuit in nanoscale. Presented at the 5th International Conference on Informatics, Electronics & Vision (ICIEV), International Conference on, IEEE, Dhaka, Bangladesh, 620–624.
  • Abdullah-Al-Shafi, M., & Bahar, A. N. (2017). A novel binary to grey and grey to binary code converter in majority voter-based QCA nanocomputing. Journal of Computational and Theoretical Nanoscience, 14, 2416–2421.10.1166/jctn.2017.6842
  • Abdullah-Al-Shafi, M., Bahar, A. N., Ahmad, F., & Ahmed, K. (2017). Performance evaluation of efficient combinational logic design using nanomaterial electronics. Cogent Engineering, 4(1), 1349539.
  • Abdullah-Al-Shafi, M., Bahar, A. N., Ahmad, F., Bhuiyan, M. M. R., & Ahmed, K. (2017). Power analysis dataset for QCA based multiplexer circuits. Data in Brief, Elsevier, 11, 593–596.10.1016/j.dib.2017.03.001
  • Abdullah-Al-Shafi, M., Bahar, A. N., Habib, M. A., Bhuiyan, M. M. R., Ahmad, F., Ahmad, P. Z., & Ahmed, K. (in press). Designing single layer counter in quantum-dot cellular automata with energy dissipation analysis. Ain Shams Engineering Journal. doi: 10.1016/j.asej.2017.05.010
  • Al Shafi, A., Bahar, A. N., & Islam, M. S. (2015). A quantitative approach of reversible logic gates in QCA. Journal of Communications Technology, Electronics and Computer Science, 3, 22–26.10.22385/jctecs.v3i0.33
  • Bahar, A. N., Uddin, M. S., Abdullah-Al-Shafi, M., Bhuiyan, M. M. R., & Ahmed, K. (2017). Designing efficient QCA even parity generator circuits with power dissipation analysis. Alexandria Engineering Journal, Elsevier. ( In press). doi:10.1016/j.aej.2017.02.002
  • Biswas, P. K., Bahar, A. N., Habib, M. A., & Abdullah-Al-Shafi, M. (2017). Efficient design of Feynman and Toffoli gate in quantum dot cellular automata (QCA) with energy dissipation analysis. Nanoscience and Nanotechnology, 7(2), 27–33. doi:10.5923/j.nn.20170702.01
  • Choi, M. (2005). A study on a Quantum-dot Cellular Automata based asynchronous circuit design. M.S., Oklahoma State University, 49, 1431653.
  • Cowburn, R. P., & Welland, M. E. (2000). Room temperature magnetic quantum cellular automata. Science, 287(5457), 1466–1468.10.1126/science.287.5457.1466
  • Dutta, P., & Mukhopadhyay, D. (2014). New architecture for flip flops using quantum-dot cellular automata. In ICT and Critical Infrastructure: Proceedings of the 48th Annual Convention of Computer Society of India-Vol II (pp. 707–714). Cham: Springer. doi: 10.1007/978-3-319-03095-1_77
  • Hassan, M. K., Nahid, N. M., Bahar, A. N., Bhuiyan, M. M. R., Abdullah-Al-Shafi, M., & Ahmed, K. (2017). Dataset demonstrating the temperature effect on average output polarization for QCA based reversible logic gates. Data in Brief, Elsevier, 13, 713–716.10.1016/j.dib.2017.06.058
  • Hennessy, K., & Lent, C. S. (2001). Clocking of molecular quantum-dot cellular automata. Journal of Vacuum Science and Technology, 19(5), 1752–1755.10.1116/1.1394729
  • Huang, J., Momenzadeh, M., & Lombardi, F. (2007). Design of sequential circuits by quantum-dot cellular automata. Microelectronic Journal, 38(4), 525–537.10.1016/j.mejo.2007.03.013
  • Islam, S., Shafi, M. A., & Bahar, A. N. (2015). Implementation of binary to gray code converters in quantum dot cellular automata. Journal of Today’s Ideas – Tomorrow’s Technologies, 3(2), 145–160.10.15415/jotitt.2015
  • Islam, M. S., Shafi, M. A., & Bahar, A. N. (2016). A new approach of presenting universal reversible gate in nanoscale. International Journal of Computer Applications, 134(7), 1–4.10.5120/ijca2016910208
  • Jagarlamudi, H. S., Saha, M., & Jagarlamudi, P. K. (2011). Quantum dot cellular automata based effective design of combinational and sequential logical structures. World Academy of Science, Engineering and Technology, 60, 671–675.
  • Landauer, R. (1961). Irreversibility and heat generation in the computing process. IBM Journal of Research and Development, 5(3), 183–191.10.1147/rd.53.0183
  • Lent, C. S., Tougaw, P. D., Porod, W., & Bernstein, G. H. (1993). Quantum cellular automata. Nanotechnology, 4(1), 49.10.1088/0957-4484/4/1/004
  • Liu, W., Lu, L., O’Neill, M., & Swartzlander, E. E. (2014). A first step toward cost functions for quantum-dot cellular automata designs. IEEE Transactions on Nanotechnology, 13(3), 476–487.
  • Mitic, M., Cassidy, M. C., Petersson, K. D., Starrett, R. P., Gauja, E., Brenner, R., & Jamieson, D. N. (2006). Demonstration of a silicon-based quantum cellular automata cell. Applied Physics Letters, 89(1), 13503.10.1063/1.2219128
  • Orlov, A. O., Amlani, I., Bernstein, G. H., Lent, C. S., & Snider, G. L. (1997). Realization of a functional cell for quantum-dot cellular automata. Science, 277(5328), 928–930.10.1126/science.277.5328.928
  • Rezaei, A. (2017). Design of optimized quantum-dot cellular automata RS flip flops. International Journal of Nanoscience and Nanotechnology, 13(1), 53–58.
  • Roohi, A., Khademolhosseini, H., Sayedsalehi, S., & Navi, K. (2014). A symmetric quantum-dot cellular automata design for 5-input majority gate. Journal of Computational Electronics, 13(3), 701–708.10.1007/s10825-014-0589-5
  • Sen, B., Dutta, M., Some, S., & Sikdar, B. K. (2014). Realizing reversible computing in QCA framework resulting in efficient design of testable ALU. ACM Journal on Emerging Technologies in Computing Systems, 11(3), 30:8–30:22.
  • Shafi, M. A., Islam, M. S., & Bahar, A. N. (2015). A review on reversible logic gates and it’s QCA implementation. International Journal of Computer Applications, 128(2), 27–34.10.5120/ijca2015906434
  • Shin, S.-H., Jeon, J.-C., & Yoo, K.-Y. (2013). Wire-crossing technique on quantum-dot cellular automata. In Proceedings – 2nd International Conference on Next Generation Computer and Information Technology, 52–57.
  • Smith, C., Gardelis, S., Rushforth, A., Crook, R., Cooper, J., Ritchie, D., … Pepper, M. (2003). Realization of quantum-dot cellular automata using semiconductor quantum dots. Superlattices and Microstructures, 34(3), 195–203.10.1016/j.spmi.2004.03.009
  • Srivastava, S., Asthana, A., Bhanja, S., & Sarkar, S. (2011). QCAPro-an error-power estimation tool for QCA circuit design. In 2011 IEEE International Symposium of Circuits and Systems (ISCAS), 2377–2380.
  • Tougaw, P. D., & Lent, C. S. (1994). Logical devices implemented using quantum cellular automata. Journal of Applied Physics, 75(3), 1818–1825.10.1063/1.356375
  • Tougaw, P. D., & Lent, C. S. (1996). Dynamic behavior of quantum cellular automata. Journal of Applied Physics, 80(8), 4722–4736.10.1063/1.363455
  • Vetteth, A., Walus, K., Dimitrov, V. S., & Jullien, G. A. (2003). Quantum-dot cellular automata of flip-flops. The National Conference on Communications (NCC), 368–372.
  • Walus, K., Dysart, T. J., Jullien, G. A., & Budiman, R. A. (2004). QCADesigner: A rapid design and simulation tool for quantum-dot cellular automata. IEEE Transactions on Nanotechnology, 3(1), 26–31.10.1109/TNANO.2003.820815
  • Walus, K., & Jullien, G. A. (2006). Design tools for an emerging SoC technology: Quantum-dot cellular automata. Proceedings of the IEEE, 94(6), 1225–1244.10.1109/JPROC.2006.875791
  • Wang, Y., & Lieberman, M. (2004). Thermodynamic behavior of molecular-scale quantum-dot cellular automata (QCA) wires and logic devices. IEEE Transactions on Nanotechnology, 3(3), 368–376.10.1109/TNANO.2004.828576