2,793
Views
26
CrossRef citations to date
0
Altmetric
Research Article

Influence of granulated blast furnace slag on mechanical properties of foam concrete

ORCID Icon & ORCID Icon | (Reviewing Editor)
Article: 1409853 | Received 25 Aug 2017, Accepted 22 Nov 2017, Published online: 27 Dec 2017

References

  • Aïtcin, P.-C. (2008). Binders for durable and sustainable concrete. Milton Park: Taylor and Francis.
  • American Concrete Institute (ACI). (2003). Slag cement in concrete and mortar (233R-03). Michigan: Author.
  • ASTM. (2001). Standard test method for density of hydraulic cement. West Conshohocken: Author.
  • ASTM. (2004). Standard specification for flow table for use in tests of hydraulic cement. West Conshohocken: Author.
  • ASTM. (2014). Standard specification for slag cement for use in concrete and mortars. West Conshohocken: Author.
  • Awang, H., Al-Mulali, M., Abdul Khalil, H. P. S., & Aljoumaily, Z. S. (2014). Utilisation of oil palm ash in foamed concrete. MATEC Web of Conferences, 15, 01033.
  • Bing, C., Zhen, W., & Ning, L. (2012). Experimental research on properties of high-strength foamed concrete. Journal of Materials in Civil Engineering, 24, 113–118.10.1061/(ASCE)MT.1943-5533.0000353
  • BS EN 15167-1:2006. (2006). Ground granulated blast furnace slag for use in concrete, mortar and grout. Definitions, specifications and conformity criteria.
  • Bs EN. (2009a). Testing of hardend concrete: Compressive strength of test specimens. London: British Standards Institution.
  • Bs EN. (2009b). Testing hardend concrete: Tensile splitting strength of test specimens. London: British Standards Institution.
  • Bs EN. (2009c). Testing hardend concrete: Flexural strength of test specimens. London: British Standards Institution.
  • BS EN 1008. (1997). Mixing water for concrete. specification for sampling, testing and assessing the suitability of water, including water recovered from processes in concrete industry, as mixing water for concrete. London: British Standards Institution.
  • Bs EN 12620. (2013). Aggregates for concrete. London: British Standards Institution.
  • Bs EN 197-1. (2011). Composition, specifications and conformity criteria for common cements. London: British Standard Institution.
  • Chandra, S. (1996). Waste materials used in concrete manufacturing. Amsterdam: Elsevier.
  • Chao-Lung, H., Anh-Tuan, B. L., & Chun-Tsun, C. (2011). Effect of rice husk ash on the strength and durability characteristics of concrete. Construction and Building Materials, 25, 3768–3772.10.1016/j.conbuildmat.2011.04.009
  • Chi, M., Chang, J., & Huang, R. (2012). Strength and drying shrinkage of alkali-activated slag paste and mortar. Advances in Civil Engineering, 2012(6), 1–7.10.1155/2012/579732
  • Hamidah, M. S., Azmi, I., Ruslan, M. R. A., Kartini, K., & Fadhil, N. M. (2005). Optimisation of foamed concrete mix of different sand-cement ratio and curing conditions. In K. D. Ravindra, D. N. Mora, & M. Aikaterini (Eds.), Use of foamed concrete in construction (pp. 37–44). London: Thomas Telford.
  • Islam, A., Alengaram, U. J., Jumaat, M. Z., & Bashar, I. I. (2014). The development of compressive strength of ground granulated blast furnace slag-palm oil fuel ash-fly ash based geopolymer mortar. Materials & Design (1980–2015), 56, 833–841.10.1016/j.matdes.2013.11.080
  • Jitchaiyaphum, K., Sinsiri, T., & Chindaprasirt, P. (2011). Cellular lightweight concrete containing pozzolan materials. Procedia Engineering, 14, 1157–1164.10.1016/j.proeng.2011.07.145
  • Jones, M. R., & McCarthy, A. (2005a). Behaviour and assessment of foamed concrete for construction applications. In K. D. Ravindra, D. N. Moray, & M. Aikaterini (Eds.), Use of foamed concrete in construction (pp. 61–88). London: Thomas Telford.
  • Jones, M. R., & McCarthy, A. (2005b). Utilising unprocessed low-lime coal fly ash in foamed concrete. Fuel, 84(11), 1398–1409.10.1016/j.fuel.2004.09.030
  • Jones, M. R., & McCarthy, A. (2005c). Preliminary views on the potential of foamed concrete as a structural material. Magazine of Concrete Research, 57(1), 21–31.10.1680/macr.2005.57.1.21
  • Kearsley, E. P. (1999). The effect of high volumes of ungraded fly ash on the properties of foamed concrete ( PhD thesis). University of Leeds.
  • Kearsley, E. P. (2006). The use of foamcrete for affordable development in third world countries. In R. K. Dhir & M. J. McCarthy (Eds.), Concrete in the service of mankind: Appropriate concrete technology, Vol. 3 (pp. 232–242). Milton Park: Taylor and Francis.
  • Kearsley, E. P., & Mostert, H. F. (2005). Designing mix composition of foamed concrete with high fly ash contents. In Ravindra K. Dhir, Moray D. Newlands, & Aikaterini McCarthy (Eds.), Use of foamed concrete in construction (pp. 29–36). London: Thomas Telford.
  • Kearsley, E. P., & Wainwright, P. J. (2001). The effect of high fly ash content on the compressive strength of foamed concrete. Cement and Concrete Research, 31(1), 105–112.10.1016/S0008-8846(00)00430-0
  • Lim, S. K., Tan, C. S., Lim, O. Y., & Lee, Y. L. (2013). Fresh and hardened properties of lightweight foamed concrete with palm oil fuel ash as filler. Construction and Building Materials, 46, 39–47.10.1016/j.conbuildmat.2013.04.015
  • Memon, N. A., Sumadi, S. R., & Ramli, M. (2007). Performance of high wokability slag-cement mortar for ferrocement. Building and Environment, 42(7), 2710–2717.10.1016/j.buildenv.2006.07.015
  • Neville, A. M. (1996). Properties of concrete. Fourth and final edition standards. Pearson: Prentice Hall. ISBN 0-582-23070-5.
  • Parniani, S., Hussin, M. W., & Mansour, F. R. (2011). Compressive strength of high volume slag cement concrete in high temperature curing. Applications of Engineering Materials, 287–290, 793–796.
  • Patra, R. K., & Mukharjee, B. B. (2017). Influence of incorporation of granulated blast furnace slag as replacement of fine aggregate on properties of concrete. Journal of Cleaner Production, 165(2017), 468–476.10.1016/j.jclepro.2017.07.125
  • Ramamurthy, K., Kunhanandan Nambiar, E. K., & Indu Siva Ranjani, G. (2009). A classification of studies on properties of foam concrete. Cement and Concrete Composites, 31(6), 388–396.10.1016/j.cemconcomp.2009.04.006
  • Ruiwen, K. (2004). Properties of high-strength foam concrete ( Master thesis). National University of Singapore.
  • Samson, G., Cyr, M., & Gao, X. X. (2017). Thermomechanical performance of blended metakaolin-GGBS alkali-activated foam concrete. Construction and Building Materials, 157, 982–993.10.1016/j.conbuildmat.2017.09.146
  • Siddique, R., & Bennacer, R. (2012). Use of iron and steel industry by-product (GGBS) in cement paste and mortar. Resources, Conservation and Recycling, 69, 29–34.10.1016/j.resconrec.2012.09.002
  • Siddique, R., & Khan, M. I. (2011). supplementary cementing materials. Berlin: Springer.10.1007/978-3-642-17866-5
  • Tan, Z., De Schutter, G., Ye, G., Gao, Y., & Machiels, L. (2014). Influence of particle size on the early hydration of slag particle activated by Ca(OH)2 solution. Construction and Building Materials, 52, 488–493.10.1016/j.conbuildmat.2013.11.073
  • Wimpenny, D. E. (2006). Some aspects of the design and production of foamed concrete. In K. D. Ravindra & M. J. McCarthy (Eds.), Concrete in the service of mankind: Appropriate concrete technology (Vol. 3, pp. 243–252). Milton Park: Taylor and Francis.
  • Yüksel, I., Siddique, R., Özkan, Ö., & Khatib, J. M. (2008). Effect of GGBFS and GSS on the properties of mortar. In C. L. Mukesh & Y. K. Hsein (Eds.), Excellence in concrete construction through innovation (pp. 445–451). UK: Taylor and Francis.
  • Zerbino, R., Giaccio, G., & Isaia, G. C. (2011). Concrete incorporating rice-husk ash without processing. Construction and Building Materials, 25, 371–378.10.1016/j.conbuildmat.2010.06.016
  • Zhao, X., Lim, S. K., Tan, C. S., Li, B., Ling, T. C., Huang, R., & Wang, Q. (2015). Properties of foamed mortar prepared with granulated blast-furnace slag. Materials, 8(2), 462–473.10.3390/ma8020462
  • Zulkarnain, F., & Ramli, M. (2011). Performance of foamed concrete mix design with silica fume for general housing construction. European Journal of Technology and Advanced Engineering Research, 1(2), 18–28.