887
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Transient electromagnetic field radiated by grounding systems caused by lightning strike in a dissipative half-space

, , ORCID Icon & | (Reviewing Editor)
Article: 1410986 | Received 14 Mar 2017, Accepted 24 Nov 2017, Published online: 11 Dec 2017

References

  • Araneo, R., Maccioni, M., Lauria, S., Geri, A., Gatta, F., & Celozzi, S. (2015). Hybrid and pi-circuit approaches for grounding system lightning response. In PowerTech, 2015 IEEE Eindhoven (pp. 1–6). IEEE.
  • Banos, A. (1966). Dipole radiation in the presence of a conducting half space. New York, NY: Pergamon Press.
  • Burke, G. J. (1992, January). Numerical electromagnetic code –NEC-4, method of moments, Part I. Lawrence Livermore National Laboratory.
  • Celli, G., Ghiani, E., & Pilo, F. (2010). Behaviour of grounding systems: A quasi-static EMTP model and its validation. In 30th International Conference on Lightning Protection (ICLP) (pp. 1–6).
  • Chatterjee, D., Rao, S. M., & Kluskens, M. S. (2016). Some new techniques for evaluating Sommerfeld integrals for microstrip antenna analysis. In Electromagnetic theory (EMTS), 2016 URSI international symposium on (pp. 335–337). IEEE.
  • Gatta, F. M., Geri, A., Lauria, S., & Maccioni, M. (2014). Generalized pi-circuit tower grounding model for direct lightning response simulation. Electric Power Systems Research, 116, 330–337.
  • Gazzana, D. S., Bretas, A. S., Dias, G. A., Tello, M., Thomas, D. W., & Christopoulos, C. (2014, February). The transmission line modeling method to represent the soil ionization phenomenon in grounding systems. IEEE Transactions on Magnetics, 50(2), 505–508.
  • Gazzana, D. S., Tronchoni, A. B., Leborgne, R. C., Bretas, A. S., Thomas, D. W. P., & Christopoulos, C. (2017). An improved soil ionization representation to numerical simulation of impulsive grounding systems. IEEE Transactions on Magnetics, 1–4. doi:10.1109/TMAG.2017.2750019
  • Geri, A. (1999, July). Behaviour of grounding systems excited by high impulse currents: The model and its validation. IEEE Transactions on Power Delivery, 14(3), 1008–1017.
  • Harrigton, R. F. (1968). Field computation by moment methods. New York, NY: Macmillan.
  • Hochman, A., & Leviatan, Y. (2010). A numerical methodology for efficient evaluation of 2D Sommerfeld integrals in the dielectric half-space problem. IEEE Transactions on Antennas and Propagation, 58(2), 413–431.
  • ICNIRP. (1998). Guidelines for limiting exposure to time-varying electric, magnetic and electromagnetic fields (up to 300 Ghz). Health Physics, 74(4), 494–522.
  • IEC 61312-1. (1995). Protection against lightning electromagnetic impulse. General principles.
  • ITU-T Recommendation K.40 (10/96). (1996). Protection against interference protection against LEMP in telecommunications centers.
  • Karami, H., Sheshyekani, K., & Rachidi, F. (2017). Mixed-potential integral equation for full-wave modeling of grounding systems buried in a lossy multilayer stratified ground. IEEE Transactions on Electromagnetic Compatibility, 59(5), 1505–1513.
  • Kherif, O., Chiheb, S., Teguar, M., Mekhaldi, A., & Harid, N. (2017, September). Time-domain modeling of grounding systems’ impulse response incorporating nonlinear and frequency-dependent aspects. IEEE Transactions on Electromagnetic Compatibility, 99. doi:10.1109/TEMC.2017.2751564
  • Li, Z. X., Li, G. F., Fan, J. B., & Yin, Y. (2011, September). Quasi-static complex image method for a current point source in horizontally stratified multilayered earth. Progress in Electromagnetics Research B, 34, 187–204.
  • Liu, Y., Theethayi, N., & Thottappillil, R. (2005, April). An engineering model for transient analysis of grounding system under lightning strikes: Nonuniform transmission-line approach. IEEE Transactions on Power Delivery, 20(2), 722–730.
  • Lorentzou, M. I., Hatziargyriou, N. D., & Papadias, B. C. (2003). Time domain analysis of grounding electrodes impulse response. IEEE Transactions on Power Delivery, 18(2), 517–524.
  • Lytle, R. J., & Lager, D. L. (1974). Numerical evaluation of sommerfield integrals (Report UCRL 51688). Lawrence Livermore Laboratory.
  • Poljak, D., Sesnic, S., Cavka, D., & Drissi, K. E. K. (2012, September). On the analysis of vertical straight thin wire above a lossy ground: Analytical versus numerical solution. In Electromagnetic Compatibility (EMC EUROPE), 2012 International Symposium on (pp. 1–6). IEEE.
  • Qi, L., Cui, X., Zhao, Z., & Li, H. (2007). Grounding performance analysis of the substation grounding grids by finite element method in frequency domain. IEEE Transactions on Magnetics, 43(4), 1181–1184.
  • Rahmat-Samii, Y., Mittra, R., & Parhami, P. (1981). Evaluation of Sommerfeld integrals for lossy half-space problems. Electromagnetics, 1(1), 1–28.
  • Sivaprasad, K. (1962). Asymptotic solution of dipoles in a conducting medium (Tech. Rept. 354). Cambridge, MA: Cruft Lab., Harvard University.
  • Sivaprasad, K., & King, R. (1963, November 19). A study of arrays of dipoles in a semi-infinite dissipative medium. IEEE Transactions on Antennas and Propagation, 11(3), 240–256.
  • Sommerfeld, A. (1949). Partial differential equations (pp. 246–267). New York, NY: Academic Press.
  • Song, J., & Chen, K. (1993, October). Propagation of EM pulses excited by an electric dipole in a conducting medium. IEEE Transactions on Antennas and Propagation, 41(10), 1414–1421.
  • Theethayi, N., Baba, Y., Rachidi, F., & Thottappillil, R. (2008, May). On the choice between transmission line and full-wave Maxwell’s equation for transient analysis of buried wires. IEEE Transactions on Electromagnetic Compatibility, 50(2), 347–357.
  • Ye, H., & Jin, Y. Q. (2010). Dual GPOF/DCIM for fast computation of Sommerfeld integrals and EM scattering from an object partially embedded in dielectric half-space. IEEE Transactions on Antennas and Propagation, 58(5), 1801–1807.
  • Zhang, B., Cui, X., Zhao, Z., Yin, H., & Li, L. (2003, April). An electromagnetic approach to analyze the performance of the substation’s grounding grid in high frequency domain. COMPEL-The international journal for computation and mathematics in electrical and electronic engineering, 22(3), 756–769.