2,910
Views
26
CrossRef citations to date
0
Altmetric
Research Article

Limiting factors for the use of palm oil biodiesel in a diesel engine in the context of the ASTM standard

, , & ORCID Icon | (Reviewing Editor)
Article: 1411221 | Received 14 Aug 2017, Accepted 24 Nov 2017, Published online: 18 Dec 2017

References

  • A. Standard, D445. (2006). Standard test method for kinematic viscosity of transparent and opaque liquids (and calculation of dynamic viscosity). West Conshohocken, PA: American Society for Testing and Materials.
  • A. Standard, D5773. (2007). Standard test method for cloud point of petroleum products (constant cooling rate method). West Conshohocken, PA (USA): ASTM.
  • A. Standard, D6584. (2008). Standard test method for determination of free and total glycerin in b-100 biodiesel methyl esters by gas chromatography. West Conshohocken, PA: American Society for Testing and Materials.
  • A. Standard, D6751. (2012). Standard specification for biodiesel fuel blend stock (B100) for middle distillate fuel. West Conshohocken, PA: ASTM International. doi:10.1520/D651-12
  • A. Standard, D93. (2008). Standard test methods for flash point by Pensky–Martens closed cup tester. West Conshohocken, PA: American Society for Testing and Materials.
  • Abu-Hamdeh, N. H., & Alnefaie, K. A. (2015). A comparative study of almond and palm oils as two bio-diesel fuels for diesel engine in terms of emissions and performance. Fuel, 150, 318–324.
  • Ali, O. M., Mamat, R., Abdullah, N. R., & Abdullah, A. A. (2016). Analysis of blended fuel properties and engine performance with palm biodiesel–diesel blended fuel. Renewable Energy, 86, 59–67.
  • Amais, R. S., Garcia, E. E., Monteiro, M. R., & Nobrega, J. A. (2012). Determination of Ca, Mg, and Zn in biodiesel microemulsions by FAAS using discrete nebulization. Fuel, 93, 167–171.
  • Arbab, M., Masjuki, H., Varman, M., Kalam, M., Imtenan, S., & Sajjad, H. (2013). Fuel properties, engine performance and emission characteristic of common biodiesels as a renewable and sustainable source of fuel. Renewable and Sustainable Energy Reviews, 22, 133–147.
  • A.S.f. Testing, Materials. (2012). Standard specification for biodiesel fuel blend stock (B100) for middle distillate fuels. West Conshohocken, PA: ASTM International.
  • A.S.f. Testing, Materials, ASTM D4052. (2009). Standard test method for density and relative density of liquids by digital density meter. West Conshohocken, PA: ASTM.
  • Aydin, H., & Bayindir, H. (2010). Performance and emission analysis of cottonseed oil methyl ester in a diesel engine. Renewable Energy, 35, 588–592.
  • Baiju, B., Naik, M., & Das, L. (2009). A comparative evaluation of compression ignition engine characteristics using methyl and ethyl esters of Karanja oil. Renewable Energy, 34, 1616–1621.
  • Bora, P., Boro, J., Konwar, L. J., & Deka, D. (2016). Formulation of microemulsion based hybrid biofuel from waste cooking oil–A comparative study with biodiesel. Journal of the Energy Institute, 89, 560–568.
  • Carvalho, A. K. F., da Conceição, L. R. V., Silva, J. P. V., Perez, V. H., & de Castro, H. F. (2017). Biodiesel production from Mucor circinelloides using ethanol and heteropolyacid in one and two-step transesterification. Fuel, 202, 503–511.
  • Chang, J.-S., Cheng, J.-C., Ling, T.-R., Chern, J.-M., Wang, G.-B., Chou, T.-C., & Kuo, C.-T. (2017). Low acid value bio-gasoline and bio-diesel made from waste cooking oils using a fast pyrolysis process. Journal of the Taiwan Institute of Chemical Engineers, 73, 1–11.
  • Chen, Y.-H., Huang, B.-Y., Chiang, T.-H., & Tang, T.-C. (2012). Fuel properties of microalgae (Chlorella protothecoides) oil biodiesel and its blends with petroleum diesel. Fuel, 94, 270–273.
  • D ASTM, 6751-03. (2007). Standard specification for biodiesel fuel blend stock (B100) for middle distillate fuels. West Conshohocken, PA: ASTM International.
  • de Almeida, V. F., García-Moreno, P. J., Guadix, A., & Guadix, E. M. (2015). Biodiesel production from mixtures of waste fish oil, palm oil and waste frying oil: Optimization of fuel properties. Fuel Processing Technology, 133, 152–160.
  • Delesma, C., Castillo, R., Sevilla-Camacho, P., Sebastian, P., & Muñiz, J. (2017). Density Functional study on the transesterification of triacetin assisted by cooperative weak interactions via a gold heterogeneous catalyst: Insights into biodiesel production mechanisms. Fuel, 202, 98–108.
  • Dong, T., Gao, D., Miao, C., Yu, X., Degan, C., Garcia-Pérez, M., … Chen, S. (2015). Two-step microalgal biodiesel production using acidic catalyst generated from pyrolysis-derived bio-char. Energy Conversion and Management, 105, 1389–1396.
  • E Standard EN14214. (2004). Automotive fuels-fatty acid methyl esters (FAME) for diesel engines, requirements and test methods.
  • Gürü, M., Koca, A., Can, Ö., Çınar, C., & Şahin, F. (2010). Biodiesel production from waste chicken fat based sources and evaluation with Mg based additive in a diesel engine. Renewable Energy, 35, 637–643.
  • Iqbal, M. A., Varman, M., Hassan, M. H., Kalam, M. A., Hossain, S., & Sayeed, I. (2015). Tailoring fuel properties using jatropha, palm and coconut biodiesel to improve CI engine performance and emission characteristics. Journal of Cleaner Production, 101, 262–270.
  • Ito, T., Sakurai, Y., Kakuta, Y., Sugano, M., & Hirano, K. (2012). Biodiesel production from waste animal fats using pyrolysis method. Fuel Processing Technology, 94, 47–52.
  • Karmakar, A., Karmakar, S., & Mukherjee, S. (2010). Properties of various plants and animals feedstocks for biodiesel production. Bioresource Technology, 101, 7201–7210.
  • Khalife, E., Kazeroni, H., Mirsalim, M., Shojaei, T. R., Mohammadi, P., Salleh, A. M., … Tabatabaei, M. (2017). Experimental investigation of low-level water in waste-oil produced biodiesel-diesel fuel blend. Energy.
  • Laesecke, J., Ellis, N., & Kirchen, P. (2017). Production, analysis and combustion characterization of biomass fast pyrolysis oil–Biodiesel blends for use in diesel engines. Fuel, 199, 346–357.
  • Li, R., Wang, Z., Ni, P., Zhao, Y., Li, M., & Li, L. (2014). Effects of cetane number improvers on the performance of diesel engine fuelled with methanol/biodiesel blend. Fuel, 128, 180–187.
  • Lim, S., & Teong, L. K. (2010). Recent trends, opportunities and challenges of biodiesel in Malaysia: An overview. Renewable and Sustainable Energy Reviews, 14, 938–954.
  • Lozada, I., Islas, J., & Grande, G. (2010). Environmental and economic feasibility of palm oil biodiesel in the Mexican transportation sector. Renewable and Sustainable Energy Reviews, 14, 486–492.
  • McCarthy, P., Rasul, M., & Moazzem, S. (2011). Analysis and comparison of performance and emissions of an internal combustion engine fuelled with petroleum diesel and different bio-diesels. Fuel, 90, 2147–2157.
  • Mohammadi, S., & Najafi, B. (2015). Prediction of Cetane number of biodiesel fuel from fatty acid ethyl ester (FAEE) composition. Indian Journal of Science and Technology, 8.
  • Najafi, B., Pirouzpanah, V., Ghobadian, B., & Sadeghpour, R. A. (2007). Experimental investigation of diesel engine performance parameters and pollution using biodiesel.
  • Najafi, B., Pirouzpanah, V., Najafi, G., Yusaf, T., & Ghobadian, B. (2007). Experimental investigation of performance and emission parameters of a small diesel engine using CNG and biodiesel (SAE Technical Paper).
  • Nguyen, T., Do, L., & Sabatini, D. A. (2010). Biodiesel production via peanut oil extraction using diesel-based reverse-micellar microemulsions. Fuel, 89, 2285–2291.
  • Nikhom, R., & Tongurai, C. (2014). Production development of ethyl ester biodiesel from palm oil using a continuous deglycerolisation process. Fuel, 117, 926–931.
  • Ozsezen, A. N., Canakci, M., Turkcan, A., & Sayin, C. (2009). Performance and combustion characteristics of a DI diesel engine fueled with waste palm oil and canola oil methyl esters. Fuel, 88, 629–636.
  • Pereira, T. C., Conceição, C. A., Khan, A., Fernandes, R. M., Ferreira, M. S., Marques, E. P., & Marques, A. L. (2016). Application of electrochemical impedance spectroscopy: A phase behavior study of babassu biodiesel-based microemulsions. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 168, 60–64.
  • Poppe, J. K., Matte, C. R., Peralba, M. D. C. R., Fernandez-Lafuente, R., Rodrigues, R. C., & Ayub, M. A. Z. (2015). Optimization of ethyl ester production from olive and palm oils using mixtures of immobilized lipases. Applied Catalysis A: General, 490, 50–56.
  • Rahman, M., Pourkhesalian, A., Jahirul, M., Stevanovic, S., Pham, P., Wang, H., … Ristovski, Z. (2014). Particle emissions from biodiesels with different physical properties and chemical composition. Fuel, 134, 201–208.
  • Ramadhas, A., Muraleedharan, C., & Jayaraj, S. (2005). Performance and emission evaluation of a diesel engine fueled with methyl esters of rubber seed oil. Renewable Energy, 30, 1789–1800.
  • Ramírez Verduzco, L. F. R. (2013). Density and viscosity of biodiesel as a function of temperature: Empirical models. Renewable and Sustainable Energy Reviews, 19, 652–665.
  • Sanjid, A., Masjuki, H., Kalam, M., Rahman, S. A., Abedin, M., & Palash, S. (2013). Impact of palm, mustard, waste cooking oil and Calophyllum inophyllum biofuels on performance and emission of CI engine. Renewable and Sustainable Energy Reviews, 27, 664–682.
  • Santos, A., Souza, L., Caldeira, V., Farias, M., Fernandes, V., & Araujo, A. (2014). Kinetic study and thermoxidative degradation of palm oil and biodiesel. Thermochimica Acta, 592, 18–22.
  • Sen, A. K., Longwic, R., Litak, G., & Górski, K. (2008). Analysis of cycle-to-cycle pressure oscillations in a diesel engine. Mechanical Systems and Signal Processing, 22, 362–373.
  • Silva, N. C., Miranda, J. S., Bolina, I. C., Silva, W. C., Hirata, D. B., de Castro, H. F., & Mendes, A. A. (2014). Immobilization of porcine pancreatic lipase on poly-hydroxybutyrate particles for the production of ethyl esters from macaw palm oils and pineapple flavor. Biochemical Engineering Journal, 82, 139–149.
  • Suppalakpanya, K., Ratanawilai, S., & Tongurai, C. (2010a). Production of ethyl ester from esterified crude palm oil by microwave with dry washing by bleaching earth. Applied Energy, 87, 2356–2359.
  • Suppalakpanya, K., Ratanawilai, S., & Tongurai, C. (2010b). Production of ethyl ester from crude palm oil by two-step reaction with a microwave system. Fuel, 89, 2140–2144.
  • Tang, H., Salley, S. O., & Simonng, K. S. (2008). Fuel properties and precipitate formation at low temperature in soy-, cottonseed-, and poultry fat-based biodiesel blends. Fuel, 87, 3006–3017.
  • Tesfa, B., Mishra, R., Gu, F., & Powles, N. (2010). Prediction models for density and viscosity of biodiesel and their effects on fuel supply system in CI engines. Renewable Energy, 35, 2752–2760.
  • Utlu, Z., & Koçak, M. S. (2008). The effect of biodiesel fuel obtained from waste frying oil on direct injection diesel engine performance and exhaust emissions. Renewable Energy, 33, 1936–1941.
  • Vieira da Silva, M. A. V., Lagnier Gil Ferreira, B. L. G., da Costa Marques, L. G., Lamare Soares Murta, A. L. S., & Vasconcelos de Freitas, M. A. V. (2017). Comparative study of NOx emissions of biodiesel-diesel blends from soybean, palm and waste frying oils using methyl and ethyl transesterification routes. Fuel, 194, 144–156.
  • Vijayaraghavan, K., & Hemanathan, K. (2009). Biodiesel production from freshwater algae. Energy & Fuels, 23, 5448–5453.
  • Xing-cai, L., Jian-guang, Y., Wu-gao, Z., & Zhen, H. (2004). Effect of cetane number improver on heat release rate and emissions of high speed diesel engine fueled with ethanol–diesel blend fuel. Fuel, 83, 2013–2020.
  • Zeng, D., Yang, L., & Fang, T. (2017). Process optimization, kinetic and thermodynamic studies on biodiesel production by supercritical methanol transesterification with CH 3 ONa catalyst. Fuel, 203, 739–748.
  • Zhou, D., Qiao, B., Li, G., Xue, S., & Yin, J. (2017). Continuous production of biodiesel from microalgae by extraction coupling with transesterification under supercritical conditions. Bioresource Technology, 238, 609–615.
  • Zulkifli, N., Kalam, M., Masjuki, H., Shahabuddin, M., & Yunus, R. (2013). Wear prevention characteristics of a palm oil-based TMP (trimethylolpropane) ester as an engine lubricant. Energy, 54, 167–173.