827
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Designing and implementing an electronic system to control moving orthosis virtual mechanical system to emulate lower limb

& ORCID Icon | (Reviewing Editor)
Article: 1456632 | Received 05 Oct 2017, Accepted 20 Mar 2018, Published online: 10 Apr 2018

References

  • Barreto, J. , Trigo, A. , Menezes, P. , Dias, J. , & de Almeida, A. T. (1998). Kinematic and dynamic modeling of a six legged robot (Masters thesis). Instituto de Sistemas e Robotica, Leiria.
  • Bortole, M. , Rovira, J. L. P. , & Lorente, L. E. M. (2013). Design and control of a robotic exoskeleton for gait rehabilation . Leganés.
  • Díaz, I. , Gil, J. J. , & Sánchez, E. (2011). Lower-limb robotic rehabilitation: Literature review and challenges . San Sebastián: Applied Mechanics Department, CEIT.
  • Farris, R. , Quintero, H. , & Goldfarb, M. (2012). Preliminary evaluation of a powered lower limb orthosis to aid walking in paraplegic individuals. IEEE Transactions on Neural Systems and Rehabilitation Engineering , 99 , 102–107.
  • Ferris, D. P. , Sawicki, G. S. , & Domingo, A. R. (2005). Powered lower limb orthoses for gait rehabilitation. Topics in Spinal Cord Injury Rehabilitation , 11 (2), 34–49. doi:10.1310/6GL4-UM7X-519H-9JYD
  • Fleischer, C. (2006). Application of EMG signals for controlling exoskeleton robots. Biomedizinische Technik/Biomedical Engineering , 51 , 314–319.10.1515/BMT.2006.063
  • Gomes, M. , Silveira, G. , & Siqueira, A. (2011). Gait pattern adaptation for an active lower-limb orthosis based on neural networks. Advanced Robotics , 25 (15), 1903–1925.10.1163/016918611X588899
  • Hasan, A. , & Chachati, L. (2017). Designing an electronic system to control moving orthosis virtual mechanical system to emulate lower limb. Research Journal of Aleppo University Engineering Sciences Series , 135 , 155.
  • Lee, S. , & Sankai, Y. (2002). Power assist control for walking aid with HAL-3 based on EMG and impedance adjustment around knee joint . International conference on intelligent robots and systems, Lausanne.
  • Madani, T. , Daachi, B. , & Djouani, K. (2014). Finite-time control of an actuated orthosis using fast terminal sliding mode . Laboratoire Images Signaux et Systèmes Intelligents: University of Paris East Créteil.
  • Mayr, A. , Kofler, M. , Quirbach, E. , Matzak, H. , Fröhlich, K. , & Saltuari, L. (2007). Prospective, blinded, randomized crossover study of gait rehabilitation in stroke patients using the lokomat gait orthosis. Neurorehabilitation and Neural Repair , 21 (4), 307–314 . Retrieved from http://nnr.sagepub.com/content/21/4/307.short 10.1177/1545968307300697
  • Neuhaus, P. , Noorden, J. , Craig, T. , Torres, T. , Kirschbaum, J. , & Pratt, J. (2011). Design and evaluation of mina: A robotic orthosis for paraplegics. In IEEE international conference on rehabilitation robotic (p. 1), ETH Zurich.
  • Niku, S. B. (2011). Introduction to robotics : Analysis, control, applications (Illustrated ed.). Hoboken, NJ: Wiley.
  • Ogata, K. (1994). Designing linear control systems with MATLAB . Englewood Cliffs, NJ: Prentice Hall.
  • Spong, M. W. , Hutchinson, S. , & Vidyasagar, M. (2011). Robot modeling and control . Hoboken, NJ: Wiley.
  • Suzuki, K. , Mito, G. , Kawamoto, H. , Hasegawa, Y. , & Sankai, Y. (2007). Intentionbased walking support for paraplegia patients with robot suit HAL. Advanced Robotics , 21 (12), 1441–1469. Retrieved from http://www.tandfonline.com/doi/abs/10.1163/156855307781746061
  • User’s Manual . (2016). Dynimexal AX-12 . 6
  • Vallery, H. , van Asseldonk, E. H. F. , Buss, M. , & van der Kooij, H. (2009). Reference trajectory generation for rehabilitation robots: Complementary limb motion estimation. IEEE Transactions on Neural Systems and Rehabilitation Engineering , 17 (1), 23–30. Retrieved from http://ieeexplore.ieee.org/xpls/absall.jsp?arnumber=4668434.